(9)設(shè)..為三個(gè)不同的平面..為兩條不同的直線.在 查看更多

 

題目列表(包括答案和解析)

設(shè)α、β、γ是三個(gè)不重合的平面,m、n為兩條不同的直線.給出下列命題:
①若nm,m?α,則nα;
②若αβ,n?β,nα,則nβ;
③若β⊥α,γ⊥α,則βγ;
④若nm,n⊥α,m⊥β,則αβ.其中真命題是( 。
A.①和②B.①和③C.②和④D.③和④

查看答案和解析>>

設(shè)α、β、γ是三個(gè)不重合的平面,m、n為兩條不同的直線.給出下列命題:
①若n∥m,m?α,則n∥α;
②若α∥β,n?β,n∥α,則n∥β;
③若β⊥α,γ⊥α,則β∥γ;
④若n∥m,n⊥α,m⊥β,則α∥β.其中真命題是( )
A.①和②
B.①和③
C.②和④
D.③和④

查看答案和解析>>

設(shè)α、β、γ是三個(gè)不重合的平面,m、n為兩條不同的直線.給出下列命題:
①若n∥m,m?α,則n∥α;
②若α∥β,n?β,n∥α,則n∥β;
③若β⊥α,γ⊥α,則β∥γ;
④若n∥m,n⊥α,m⊥β,則α∥β.其中真命題是


  1. A.
    ①和②
  2. B.
    ①和③
  3. C.
    ②和④
  4. D.
    ③和④

查看答案和解析>>

設(shè)、為同平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿足不共線,,,則的值一定等于(    )

A.以、為兩邊的三角形面積;           B.以為鄰邊的平行四邊形的面積;

C.以、為兩邊的三角形面積;           D.以、為鄰邊的平行四邊形的面積.

 

查看答案和解析>>

設(shè)、為同平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿足不共線,,,則的值一定等于(    )

   .以、為兩邊的三角形面積;    .以、為鄰邊的平行四邊形的面積;

   C.以為兩邊的三角形面積;     .以、為鄰邊的平行四邊形的面積

 

查看答案和解析>>

一、選擇題:

A卷:CCABD    BDCBB    AA

二、填空題:

(13)        (14)    (15)    (16)

三、解答題:

(17)解:

,知,又,由正弦定理,有

,∴,,……3分

  ……………5分

        

         …………8分

,,  ∴

故所求函數(shù)為,函數(shù)的值域?yàn)?sub>……………10分

(18)解:

      記顧客購(gòu)買(mǎi)一件產(chǎn)品,獲一等獎(jiǎng)為事件,獲二等獎(jiǎng)為事件,不獲獎(jiǎng)為事件,則,

(Ⅰ)該顧客購(gòu)買(mǎi)2件產(chǎn)品,中獎(jiǎng)的概率

  ……………4分

  (Ⅱ)的可能值為0,20,40,100,120,200,其中

        ,,

         ,

        ……………8分

的分布列為

                                                                ……………10分

的期望

(元)…………………………………………………………………12分

(19)解法一:

      (Ⅰ)取中點(diǎn),連結(jié),則

       又, ∴,四邊形是平行四邊形,

       ∴,又

       ∴ ……………………………………………………4分

      (Ⅱ)連結(jié)

        ∵,  ∴

       又平面平面,∴

      而,  ∴

     作,則,且,的中點(diǎn)。

,連結(jié),則

 于是為二面角的平面角!8分

,,∴,

在正方形中,作,則

,

,∴

故二面角的大小為…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,使軸,、分別在軸、軸上。

(Ⅰ)由已知,,,,,

, ,,

, ∴,

,∴   ………………………………………4分

(Ⅱ)設(shè)為面的法向量,則,且。

,,

,取,,,則 ……………8分

為面的法向量,所以,

因?yàn)槎娼?sub>為銳角,所以其大小為…………………………12分

(20)解:

     (Ⅰ)  ……………………………………………………1分

      (1)當(dāng)時(shí),由,知,單調(diào)遞增
         而,則不恒成立…………………………3分

       (2)當(dāng)時(shí),令,得

           當(dāng)時(shí),單調(diào)遞增;時(shí), 單調(diào)遞減,處取得極大值。

   由于,所以,解得,即當(dāng)且僅當(dāng)時(shí)恒成立。

綜上,所求的值為   …………………………7分

(Ⅱ)等價(jià)于,

下證這個(gè)不等式成立。

由(Ⅰ)知,即,……………9分

…………………………12分

(21)解:

(Ⅰ)曲線方程可寫(xiě)為,

設(shè),則,又設(shè)、、

曲線在點(diǎn)處的切線斜率,則切線方程為,

,亦即…………………………3分

分別將、坐標(biāo)代入切線方程得

,

,得

,  ①

,  ②

……………7分

,∴,

則由②式得

從而曲線的方程為…………………………8分

(Ⅱ)軸與曲線、交點(diǎn)分別為、,此時(shí)……9分

當(dāng)、不在軸上時(shí),設(shè)直線方程為。

,則、在第一象限,

,得,由

………………………………………11分

因?yàn)榍都關(guān)于軸對(duì)稱,所以當(dāng)時(shí),仍有

綜上,題設(shè)的為定值…………………………12分

(22)解:

      (Ⅰ)由,且,得

當(dāng)時(shí), ,解得;

當(dāng)時(shí),,解得

猜想:……………………………………………………2分

用數(shù)學(xué)歸納法證明如下

(1)       當(dāng)時(shí),命題顯然成立!3分

(2)       假設(shè)當(dāng)時(shí)命題成立,即,那么

         由,得

       

              于是,當(dāng)時(shí)命題仍然成立………………………………………6分

根據(jù)(1)和(2),對(duì)任何,都有…………………………7分

(Ⅱ)當(dāng)時(shí),,且對(duì)于也成立。

因此,

對(duì)于,由,得

,……………10分

,

綜上,………………………………………12分

 

 

 


同步練習(xí)冊(cè)答案