(1)若使,求實(shí)數(shù)的取值范圍, 查看更多

 

題目列表(包括答案和解析)

設(shè)集合,.
(Ⅰ) 若,求實(shí)數(shù)的取值范圍;
(Ⅱ) 當(dāng)時(shí),不存在元素使同時(shí)成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(13分)已知函數(shù).

(Ⅰ)若上是增函數(shù),求實(shí)數(shù)的取值范圍;

   (Ⅱ)是否存在正實(shí)數(shù),使得的導(dǎo)函數(shù)有最大值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知在區(qū)間上是增函數(shù).

(1)求實(shí)數(shù)的取值范圍;

(2)記(1)中實(shí)數(shù)的范圍為集合A,且設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為.

①求的最大值;

②試問(wèn):是否存在實(shí)數(shù)m,使得不等式對(duì)于任意恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

集合

①若,求實(shí)數(shù)的值;②若,求實(shí)數(shù)的取值范圍.

③若.試定義一種新運(yùn)算,使

 

查看答案和解析>>

(1)當(dāng)時(shí),上恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若函數(shù)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)是否存在實(shí)數(shù),使函數(shù)f(x)和函數(shù)在公共定義域上具有相同的單調(diào)區(qū)間?若存在,求出的值,若不存在,說(shuō)明理由。

 

查看答案和解析>>

 

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號(hào)

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                           

點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學(xué)被抽到的概率為

設(shè)有名男同學(xué),則男、女同學(xué)的人數(shù)分別為

(2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有種,其中有一名女同學(xué)的有

選出的兩名同學(xué)中恰有一名女同學(xué)的概率為

(3)

,

第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點(diǎn)   

    平面

    是棱的中點(diǎn)            

    平面

    平面平面

    (2)  

    同理

          

      

    ,       

    ,,    

     

    19.(本小題滿分14分)

    解:(1)由……①,得……②

    ②-①得:    

    所以,求得     

    (2),    

                                                         

     

     

    20.(本小題滿分14分)

    解:(1)由題設(shè)知:

    得:

    解得,橢圓的方程為

    (2)

                

    從而將求的最大值轉(zhuǎn)化為求的最大值

    是橢圓上的任一點(diǎn),設(shè),則有

    ,

    當(dāng)時(shí),取最大值   的最大值為

     

    21.(本小題滿分14分)

    解:(1)由,,得,

    所以,

    (2)由題設(shè)得

    對(duì)稱軸方程為

    由于上單調(diào)遞增,則有

    (Ⅰ)當(dāng)時(shí),有

    (Ⅱ)當(dāng)時(shí),

    設(shè)方程的根為,

    ①若,則,有    解得

    ②若,即,有;

              

    由①②得 。

    綜合(Ⅰ), (Ⅱ)有 

     


    同步練習(xí)冊(cè)答案