題目列表(包括答案和解析)
△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足,求A。
【解析】本試題主要考查了解三角形的運(yùn)用,
因?yàn)?/p>
【點(diǎn)評】該試題從整體來看保持了往年的解題風(fēng)格,依然是通過邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運(yùn)算得到A。
已知拋物線C:與圓有一個公共點(diǎn)A,且在A處兩曲線的切線與同一直線l
(I) 求r;
(II) 設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離。
【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點(diǎn)處的切線的運(yùn)用,并在此基礎(chǔ)上求解點(diǎn)到直線的距離。
【點(diǎn)評】該試題出題的角度不同于平常,因?yàn)樯婕暗氖莾蓚二次曲線的交點(diǎn)問題,并且要研究兩曲線在公共點(diǎn)出的切線,把解析幾何和導(dǎo)數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學(xué)習(xí)也是一個需要練習(xí)的方向。
設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個不同的點(diǎn)().
(1) 當(dāng)時,試寫出拋物線上的三個定點(diǎn)、、的坐標(biāo),從而使得
;
(2)當(dāng)時,若,
求證:;
(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實(shí)得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.
由拋物線定義得到
第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,
故可取滿足條件.
(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
;
所以.
(3) ①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)
② 設(shè),分別過作
拋物線的準(zhǔn)線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)()滿足 ”,即:
“當(dāng)時,若,且點(diǎn)的縱坐標(biāo)()滿足,則”.此命題為真.事實(shí)上,設(shè),
分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱”,即:
“當(dāng)時,若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)
如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。
(I) 證明PC平面BED;
(II) 設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小
【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。
從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。
解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又
【點(diǎn)評】試題從命題的角度來看,整體上題目與我們平時練習(xí)的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對于學(xué)生來說就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問題為好。
某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售。如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理。
(Ⅰ)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式。
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
頻數(shù) |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
(i)假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.
【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
【解析】(Ⅰ)當(dāng)日需求量時,利潤=85;
當(dāng)日需求量時,利潤,
∴關(guān)于的解析式為;
(Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為
=76.4;
(ii)利潤不低于75元當(dāng)且僅當(dāng)日需求不少于16枝,故當(dāng)天的利潤不少于75元的概率為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com