[評(píng)析]該題是一個(gè)好題.但是與1994年上海高考試題太過(guò)類似:如圖在梯形ABCD中.AD∥BC.∠ABC=.AB=a.AD=3a.且∠ADC=arcsin,又PA⊥平面ABCD.PA=a,求 查看更多

 

題目列表(包括答案和解析)

 【命題意圖】此題是一個(gè)數(shù)列與類比推理結(jié)合的問(wèn)題,既考查了數(shù)列中等差數(shù)列和等比數(shù)列的知識(shí),也考查了通過(guò)已知條件進(jìn)行類比推理的方法和能力 

查看答案和解析>>

已知拋物線C:與圓有一個(gè)公共點(diǎn)A,且在A處兩曲線的切線與同一直線l

(I)     求r;

(II)   設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離。

【解析】本試題考查了拋物線與圓的方程,以及兩個(gè)曲線的公共點(diǎn)處的切線的運(yùn)用,并在此基礎(chǔ)上求解點(diǎn)到直線的距離。

【點(diǎn)評(píng)】該試題出題的角度不同于平常,因?yàn)樯婕暗氖莾蓚(gè)二次曲線的交點(diǎn)問(wèn)題,并且要研究?jī)汕在公共點(diǎn)出的切線,把解析幾何和導(dǎo)數(shù)的工具性結(jié)合起來(lái),是該試題的創(chuàng)新處。另外對(duì)于在第二問(wèn)中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問(wèn)題對(duì)于我們以后的學(xué)習(xí)也是一個(gè)需要練習(xí)的方向。

 

 

查看答案和解析>>

△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對(duì)邊a、b、c滿足,求A。

【解析】本試題主要考查了解三角形的運(yùn)用,

因?yàn)?/p>

【點(diǎn)評(píng)】該試題從整體來(lái)看保持了往年的解題風(fēng)格,依然是通過(guò)邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識(shí),以及正弦定理和余弦定理,求解三角形中的角的問(wèn)題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運(yùn)算得到A。

 

查看答案和解析>>

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體形狀大致為
該幾何體是一個(gè)由圓錐的一半和一個(gè)四棱錐由左到右組合而成其中四棱錐的底面是一個(gè)矩形,
該幾何體是一個(gè)由圓錐的一半和一個(gè)四棱錐由左到右組合而成其中四棱錐的底面是一個(gè)矩形,

查看答案和解析>>

如圖所示,直角梯形ABCD中,ADBC,且ADBC,該梯形繞邊AD所在直線EF旋轉(zhuǎn)一周得一幾何體,畫出該幾何體的直觀圖和三視圖.

[分析] 該幾何體是一個(gè)圓錐和一個(gè)圓柱拼接成的簡(jiǎn)單組合體.

查看答案和解析>>


同步練習(xí)冊(cè)答案