故有此即 查看更多

 

題目列表(包括答案和解析)

電視中有一檔互動(dòng)節(jié)目,觀眾參與后,幸運(yùn)觀眾可以獲得一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在抽獎(jiǎng)臺(tái)上有A、B、C三個(gè)抽獎(jiǎng)箱,其中有且僅有一個(gè)抽獎(jiǎng)箱中有獎(jiǎng)品,如果觀眾選中有獎(jiǎng)品的箱子,就可以獲得獎(jiǎng)品;不過,當(dāng)觀眾第一次選擇后(不妨假設(shè)觀眾選擇A箱),主持人會(huì)打開余下兩個(gè)箱子中的某一個(gè)(當(dāng)然是沒有獎(jiǎng)品的,不妨設(shè)主持人打開了C箱),然后告訴幸運(yùn)觀眾可以改變自己的選擇,即可以放棄A箱而選擇B箱.一般情況下,觀眾認(rèn)為:此時(shí)A與B有無獎(jiǎng)品的概率都是二分之一,故一般都不改變選擇,這樣做合理嗎?如果你是那位幸運(yùn)觀眾,你會(huì)做怎樣的選擇呢?

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

對(duì)命題“abc推出ac”,關(guān)于真假問題,甲、乙兩個(gè)學(xué)生的判斷如下:甲生判斷是真命題.理由是:由ab可知ab的方向相同或相反,由bc可知cb的方向相同或相反,從而有ac的方向相同或相反,故ac,即原命題為真命題;乙生判斷是假命題.理由是:當(dāng)兩個(gè)非零向量a,c不平行,而b=0時(shí),顯然abbc,但不能推出abc,故此時(shí)結(jié)論不成立,即原命題為假命題.究竟甲、乙兩生誰的判斷正確呢?請(qǐng)給以分析.

查看答案和解析>>

已知數(shù)列的前項(xiàng)和為,且 (N*),其中

(Ⅰ) 求的通項(xiàng)公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時(shí),由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對(duì)偶式)設(shè),,

.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

   ②假設(shè)時(shí),命題成立,即,

   則當(dāng)時(shí),

    即

故當(dāng)時(shí),命題成立.

綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

②由于

所以,

從而.

也即

 

查看答案和解析>>

已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

(2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列,試寫出數(shù)列的通項(xiàng)公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說明理由.

【解析】第一問中解:由,,

又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

此時(shí)也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質(zhì)得:

(i)當(dāng)時(shí),

(ii) 當(dāng)時(shí),,

所以

第三問假設(shè)存在正整數(shù)n滿足條件,則

則(i)當(dāng)時(shí),

,

 

查看答案和解析>>


同步練習(xí)冊(cè)答案