綜上當(dāng)且僅當(dāng)時(shí).對任意恒有[評(píng)析]注意運(yùn)用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間的一般步驟 查看更多

 

題目列表(包括答案和解析)

二次函數(shù)滿足條件:

①對任意,均有;②函數(shù)的圖象與直線相切。

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)當(dāng)且僅當(dāng)時(shí),恒成立,試求t、m的值。

查看答案和解析>>

若對任意,(、)有唯一確定的與之對應(yīng),稱為關(guān)于的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào);

(2)對稱性:;

(3)三角形不等式:對任意的實(shí)數(shù)z均成立.

今給出四個(gè)二元函數(shù):①;②;③;

.能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號(hào)是(      )

A. ①       B. ②      C. ③     D. ④

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

(09年華師一附中期中檢測文)(12分)

已知二次函數(shù)滿足條件:

①對任意,均有;②函數(shù)的圖象與直線相切

(I)求函數(shù)的解析式;

   (II)當(dāng)且僅當(dāng)時(shí),恒成立,試求的值。

查看答案和解析>>

若對任意,,(、)有唯一確定的與之對應(yīng),稱為關(guān)于、的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)、的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時(shí)取等號(hào);

(2)對稱性:;

(3)三角形不等式:對任意的實(shí)數(shù)z均成立.

今給出四個(gè)二元函數(shù):

;②;④.

能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號(hào)是                 .

 

查看答案和解析>>


同步練習(xí)冊答案