18.設(shè)數(shù)列的前項(xiàng)和為.且,數(shù)列為等差數(shù)列.且.. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分16分)

設(shè)數(shù)列的前項(xiàng)的和為,已知.

⑴求,

⑵設(shè)若對(duì)一切均有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(本小題滿(mǎn)分16分)

設(shè)數(shù)列的前項(xiàng)和為,已知).

(1)求的值;

(2)求證:數(shù)列是等比數(shù)列;

(3)抽去數(shù)列中的第1項(xiàng),第4項(xiàng),第7項(xiàng),……,第項(xiàng),……,余下的項(xiàng)順序不變,組成一個(gè)新數(shù)列,若的前項(xiàng)的和為,求證:

 

查看答案和解析>>

(本小題滿(mǎn)分16分)
設(shè)數(shù)列的前項(xiàng)和為,已知).
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)抽去數(shù)列中的第1項(xiàng),第4項(xiàng),第7項(xiàng),……,第項(xiàng),……,余下的項(xiàng)順序不變,組成一個(gè)新數(shù)列,若的前項(xiàng)的和為,求證:

查看答案和解析>>

(本小題滿(mǎn)分16分)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列滿(mǎn)足: ,且數(shù)列的前

n項(xiàng)和為.

(1) 求的值;

(2) 求證:數(shù)列是等比數(shù)列;

(3) 抽去數(shù)列中的第1項(xiàng),第4項(xiàng),第7項(xiàng),……,第3n-2項(xiàng),……余下的項(xiàng)順序不變,組成一個(gè)新數(shù)列,若的前n項(xiàng)和為,求證:.

查看答案和解析>>

(本小題滿(mǎn)分16分)設(shè)數(shù)列的前n項(xiàng)和為,數(shù)列滿(mǎn)足: ,且數(shù)列的前

n項(xiàng)和為.

(1) 求的值;

(2) 求證:數(shù)列是等比數(shù)列;

(3) 抽去數(shù)列中的第1項(xiàng),第4項(xiàng),第7項(xiàng),……,第3n-2項(xiàng),……余下的項(xiàng)順序不變,組成一個(gè)新數(shù)列,若的前n項(xiàng)和為,求證:.

查看答案和解析>>

一、填空題:

1.    2. 三    3.  1    4.  25  5.    6. -1  7.     8. (1,0)

9.    10.  8    11. 1   12. (0,2)  13. 2026    14. ①②③

二、解答題:

15. 解:(1)因?yàn)?sub>,所以

…………………………4

            ……………………………………………………..6分

因此,當(dāng),即)時(shí),取得最大值;…8分

(2)由,兩邊平方得

,即.……………………………………………12分

因此,.……………………………14分

 

16.解:由已知不等式得

        ①

或              ②

不等式①的解為

不等式②的解為…………………………………………………4分

因?yàn)椋瑢?duì)時(shí),P是正確的………………………..6分

對(duì)函數(shù)求導(dǎo)…8分

,即

當(dāng)且僅當(dāng)D>0時(shí),函數(shù)f()在(-¥,+¥)上有極值

,

因?yàn),?dāng)時(shí),Q是正確的………………………………………………12分

綜上,使P正確且Q正確時(shí),實(shí)數(shù)m的取值范圍為(-¥,-1)È……….14分

 

17.解:(1)因?yàn)楹瘮?shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以

,得……………………………………….2分

當(dāng)時(shí),舍去;

當(dāng)時(shí),,令,解得.

所以符合條件的m值為-1 …………………………………………………………………4分

(2)由(1)得,任取,

……………………6分

   ∴,

………………………………………………………………….8分

∴當(dāng)時(shí),,此時(shí)為增函數(shù);

當(dāng)時(shí),,此時(shí)為減函數(shù)…10分

(3)由(2)知,當(dāng)時(shí)上為減函數(shù);同理在上也為減函數(shù)

當(dāng)時(shí),與已知矛盾,舍去;………………12分

當(dāng)時(shí),因?yàn)楹瘮?shù)的值域?yàn)?sub>

,解得,……………………………………14分

18.解:(1)由,令,則,又,所以.

,則.  …………………………………………………………………………………….2分

當(dāng)時(shí),由,可得. 即..6分

所以是以為首項(xiàng),為公比的等比數(shù)列,于是. ……8分

(2)數(shù)列為等差數(shù)列,公差,可得. ….10分

從而. ……………………………………………..12分

……….16分

19.解:(1)依題意知汽車(chē)從甲地勻速行駛到乙地所用時(shí)間為,全程運(yùn)輸成本為 ……………………………………….4分

故所求函數(shù)及其定義域?yàn)?sub> ………………………….6分

(2)依題意知a,v都為正數(shù),故有

當(dāng)且僅當(dāng).即時(shí)上式中等號(hào)成立………………………...8分

(1)若,即時(shí)則當(dāng)時(shí),全程運(yùn)輸成本y最小.10分

(2)若,即時(shí),則當(dāng)時(shí),有

.

。也即當(dāng)v=100時(shí),全程運(yùn)輸成本y最。.14分

綜上知,為使全程運(yùn)輸成本y最小,當(dāng)時(shí)行駛速度應(yīng)為千米/時(shí);

當(dāng)時(shí)行駛速度應(yīng)為v=100千米/時(shí)!16分

20.解: (1)  ,當(dāng),,單調(diào)遞減,當(dāng),單調(diào)遞增.………………………………………………………………..2分

,t無(wú)解;

,即時(shí),;

,即時(shí),上單調(diào)遞增,;

所以.…………………………………………………………..6分

(2)  ,則,………………………………………..8分

設(shè),則,,,單調(diào)遞減,,,單調(diào)遞增,所以……………………….10分

因?yàn)閷?duì)一切,恒成立,所以;………………..12分

(3) 問(wèn)題等價(jià)于證明,由⑴可知的最小值是,當(dāng)且僅當(dāng)時(shí)取到………………………………………………………….14分

設(shè),則,易得,當(dāng)且僅當(dāng)時(shí)取到,從而對(duì)一切,都有成立.……………………………..16分

 

 


同步練習(xí)冊(cè)答案