題目列表(包括答案和解析)
函數(shù)的最大值為( )
A. B. C. D.
函數(shù)的最大值為3,它的圖像相鄰的兩個對稱軸之間的距離為2,圖像在軸上的截距為2。
(I)求函數(shù)的解析式:
(II)設(shè)數(shù)列,是它的前項和,求。
函數(shù)的最大值為3,它的圖像相鄰的兩個對稱軸之間的距離為2,圖像在軸上的截距為2。
(I)求函數(shù)的解析式:
(II)設(shè)數(shù)列,是它的前項和,求。
函數(shù)的最大值為 。
一、選擇題:每小題5分,共60分.
BABDB DCABD BD
二、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卷相應(yīng)題號的橫線上.
13.某校有教師200人,男學(xué)生1200人,女學(xué)生1000人,現(xiàn)用分層抽樣的方法從所有老師中抽取一個容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n的值為:16
14.若△ABC三個內(nèi)角A、B、C的對邊分別是a、b、c,且acosB+bcosA=csinC,則角C的大小為:
15.若、滿足約束條件的最大值為:2
16.若,且,則實數(shù)x的取值范圍是:
三、解答題:本大題共6小題,共70分.把答案填在答題卷相應(yīng)題號的答題區(qū)中.
17.(本小題滿分10分)
如圖,已知,,且,.
(I)試用表示;
(Ⅱ)設(shè)向量和的夾角為,求的值.
解:(I)設(shè),則
,; …………3分
因,,,
所以 解得:
即 . …………5分
(Ⅱ)由(I)知 ,又,
所以 ) ()=,
…………8分
故 . …………10分
18.(本小題滿分10分)
甲、乙等五名奧運志愿者被隨機(jī)地分配到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(Ⅰ)求甲、乙兩人同時被分配到崗位服務(wù)的概率;
(Ⅱ)求甲、乙兩人被分配到不同崗位服務(wù)的概率.
解:(Ⅰ)記甲、乙兩人同時被分到崗位服務(wù)為事件,
那么,
即甲、乙兩人同時被分到崗位服務(wù)的概率是. …………5分
(Ⅱ)設(shè)甲、乙兩人同時被分到同一崗位服務(wù)為事件,
那么,
故甲、乙兩人被分到不同崗位服務(wù)的概率是. …………10分
19.(本小題滿分12分)
如圖,四面體ABCD中,O是BD的中點,AB=AD=,CA=CB=CD=BD=2.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)求異面直線AB與CD所成角的大小.
解:(方法一)
(Ⅰ)連結(jié)OC.∵BO=DO,AB=AD, BC=CD,
∴AO⊥BD,CO⊥BD. …………3分
在△AOC中,由已知得AC=2,AO=1,CO=,
∴AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.
∴AO平面BCD. …………6分
(Ⅱ)分別取AC、BC的中點M、E,連結(jié)OM、ME、OE,則
ME∥AB,OE∥DC.
∴(或其補角)等于異面直線AB與CD所成的角. …………9分
在△OME中,
又 是直角△AOC斜邊AC上的中線,∴
∴
∴異面直線AB與CD所成角的大小為 …………12分
(方法二)
(Ⅰ)同方法一. …………6分
(Ⅱ)由(Ⅰ)知:AO⊥OC,AO⊥BD,CO⊥BD.
以O為原點,建立空間直角坐標(biāo)系如圖, …………7分
則A(0,0,1),B(1,0,0),C(0,,0),D(-1,0,0) . …………10分
所以 ,
∴異面直線AB與CD所成角的大小為 …………12分
20.(本小題滿分12分)
數(shù)列滿足,且.
(I)求,并證明數(shù)列是等比數(shù)列;
(II)求.
解:(I),
; …………2分
又,, …………4分
且
所以數(shù)列是以-2為首項,3為公比的等比數(shù)列. …………6分
(II)由(I)得, . …………8分
…………10分
…………12分
21.(本小題滿分13分)
已知函數(shù),在任意一點處的切線的斜率為.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若在上的最小值為,求在R上的極大值.
21. 解:(I)因,所以; …………2分
故 , ,,,
, . …………4分
由知在和上是增函數(shù),
由知在(-1,2)上為減函數(shù). …………8分
(II)由(I)知在(-3,-1)上是增函數(shù),在(-1,2)上為減函數(shù),
所以 在上的最小值是或,極大值為. …………10分
而,,,
∴在上的最小值是,∴,. …………12分
,
即所求函數(shù)在R上的極大值為 …………13分
22.(本小題滿分13分)
如圖,傾斜角為的直線經(jīng)過拋物線的焦點F,且與拋物線交于A、B兩點.
(I)求拋物線的焦點F的坐標(biāo)及準(zhǔn)線l的方程;
(II)若為銳角,作線段AB的垂直平分線m交x軸于點P,證明為定值,并求此定值.
解:(I)設(shè)拋物線的標(biāo)準(zhǔn)方程為,則,從而.
因此拋物線焦點F的坐標(biāo)為(2,0),準(zhǔn)線方程為. ……………4分
(II)作AC⊥l,BD⊥l,垂足分別為C、D,
則由拋物線的定義知:|FA|=|AC|,|FB|=|BD|.
記A、B的橫坐標(biāo)分別為xA、xB,則
|FA|=|AC|=
解得; ……………7分
|FB|=|BD|=
解得. ……………9分
記直線m與AB的交點為E,則
,
所以. ……………12分
故. ……………13分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com