3.以拋物線上的任意一點為圓心作圓與直線相切.這些圓必過一定點. 則這一定點的坐標(biāo)是 查看更多

 

題目列表(包括答案和解析)

以拋物線上的任意一點為圓心作圓與直線相切,這些圓必過一定點,則這一定點的坐標(biāo)是(   )

A.B.(2,0)C.(4,0)D.

查看答案和解析>>

以拋物線上的任意一點為圓心作圓與直線相切,這些圓必過一定點,則這一定點的坐標(biāo)是(   )
A.B.(2,0)C.(4,0)D.

查看答案和解析>>

以拋物線上的任意一點為圓心作圓與直線相切,這些圓必過一定點,

   則這一定點的坐標(biāo)是(    )

       A.           B.(2,0)        C.(4,0)        D.

查看答案和解析>>

以拋物線y28x上的任意一點為圓心作圓與直線x20相切,這些圓必過一定點,則這一定點的坐標(biāo)是(  )

A(02) B(2,0)

C(40) D(0,4)

 

查看答案和解析>>

以拋物線y2=8x上的任意一點為圓心作圓與直線x+2=0相切,這些圓必過一定點,則這一定點的坐標(biāo)是(  )
A.(0,2)B.(2,0)C.(4,0)D.(0,4)

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

<source id="udb87"></source>
    <label id="udb87"><progress id="udb87"><track id="udb87"></track></progress></label>
    <track id="udb87"><ol id="udb87"></ol></track>
      <i id="udb87"><del id="udb87"><cite id="udb87"></cite></del></i>

    1. 2,4,6

      13.    14.7   15.2    16.

      17.17.解:(1)  --------------------2分

       --------------------4分

      --------------------6分

      .--------------------8分

      當(dāng)時(9分),取最大值.--------------------10分

      (2)當(dāng)時,,即,--------------------11分

      解得,.-------------------- 12分

      18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

      ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

      解法二  “有放回摸取”可看作獨立重復(fù)實驗∵每次摸出一球得白球的概率為

      ∴“有放回摸兩次,顏色不同”的概率為

      (2)設(shè)摸得白球的個數(shù)為,依題意得

      19.方法一

       

         (2)

      20.解:(1)

        ∵ x≥1. ∴ ,-----------------------------------------------------2分

         (當(dāng)x=1時,取最小值).

        ∴ a<3(a=3時也符合題意). ∴ a≤3.------------------------------------4分

       。2),即27-6a+3=0, ∴ a=5,.------------6分

      ,或 (舍去) --------------------------8分

      當(dāng)時,; 當(dāng)時,

        即當(dāng)時,有極小值.又    ---------10分

         ∴ fx)在,上的最小值是,最大值是. ----------12分

      21.解:(Ⅰ)∵,∴,

      ∵數(shù)列{}的各項均為正數(shù),∴,

      ,

      ),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

      的等差中項,

      ,∴

      ∴數(shù)列{}的通項公式.……………………………………………………6分

         (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      ,

            1

         ②

      ②-1得,

      =……………………………10分

      要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

      ∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

      22.解:(Ⅰ)由已知得

       

                    …………4分

        (Ⅱ)設(shè)P點坐標(biāo)為(x,y)(x>0),由

              

                             …………5分    

               ∴   消去m,n可得

                   ,又因     8分 

              ∴ P點的軌跡方程為  

              它表示以坐標(biāo)原點為中心,焦點在軸上,且實軸長為2,焦距為4的雙曲線

      的右支             …………9分

      (Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

              

              即                          

       易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

              又     

             設(shè),則

             ∵  l與C的兩個交點軸的右側(cè)

                

             ∴ ,即     

      又由  同理可得       …………11分

              由

             

           ∴

         由

                 

        由

                 

      消去

      解之得: ,滿足                …………13分

      故所求直線l存在,其方程為:  …………14分

       

       


      同步練習(xí)冊答案