以拋物線y2=8x上的任意一點(diǎn)為圓心作圓與直線x+2=0相切,這些圓必過一定點(diǎn),則這一定點(diǎn)的坐標(biāo)是( )
A.(0,2) B.(2,0)
C.(4,0) D.(0,4)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集19講練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ln x-ax(a∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=且g(x)≤1恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集17講練習(xí)卷(解析版) 題型:選擇題
已知x與y之間的幾組數(shù)據(jù)如下表:
x | 0 | 1 | 2 | 3 |
y | 0 | 2 | 6 | 7 |
則y與x的線性回歸方程=x+必過點(diǎn)( )
A.(1,2) B.(2,6) C. D.(3,7)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集16講練習(xí)卷(解析版) 題型:選擇題
如圖X16-2所示,把一個單位圓八等分,某人向圓內(nèi)投鏢,則他投中陰影區(qū)域的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集15講練習(xí)卷(解析版) 題型:填空題
如圖所示,已知橢圓C:+y2=1,在橢圓C上任取不同兩點(diǎn)A,B,點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′,當(dāng)A,B變化時,如果直線AB經(jīng)過x軸上的定點(diǎn)T(1,0),則直線A′B經(jīng)過x軸上的定點(diǎn)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集14講練習(xí)卷(解析版) 題型:解答題
設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)P在y軸上的射影是Q,點(diǎn)M,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點(diǎn)F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集14講練習(xí)卷(解析版) 題型:選擇題
已知F1, F2是橢圓x2+2y2=6的兩個焦點(diǎn),點(diǎn)M在此橢圓上且∠F1MF2=60°,則△MF1F2的面積等于( )
A. B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集13講練習(xí)卷(解析版) 題型:選擇題
已知x2+y2=1,則的取值范圍是( )
A.(-,) B.(-∞,) C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集10講練習(xí)卷(解析版) 題型:填空題
數(shù)列{2n·3n}的前n項和Tn=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com