將直線的方程代入到雙曲線方程中得. ----10分 查看更多

 

題目列表(包括答案和解析)

已知的展開式中第3項(xiàng)的系數(shù)與第5項(xiàng)的系數(shù)之比為

(1)求的值;(2)求展開式中的常數(shù)項(xiàng).

【解析】(1)利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),求出展開式中第3項(xiàng)與第5項(xiàng)的系數(shù)列出方程求出n的值.

(2)將求出n的值代入通項(xiàng),令x的指數(shù)為0求出r的值,將r的值代入通項(xiàng)求出展開式的常數(shù)項(xiàng).

 

查看答案和解析>>

設(shè)拋物線>0)的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),已知以為圓心,為半徑的圓,兩點(diǎn).

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點(diǎn)在同一條直線上,直線平行,且只有一個公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點(diǎn)為E,圓F的半徑為

則|FE|=,=,E是BD的中點(diǎn),

(Ⅰ) ∵,∴=,|BD|=

設(shè)A(,),根據(jù)拋物線定義得,|FA|=

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,,三點(diǎn)在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

設(shè)直線的方程為:,代入得,

只有一個公共點(diǎn), ∴=,∴,

∴直線的方程為:,∴原點(diǎn)到直線的距離=

∴坐標(biāo)原點(diǎn)到,距離的比值為3.

解析2由對稱性設(shè),則

      點(diǎn)關(guān)于點(diǎn)對稱得:

     得:,直線

     切點(diǎn)

     直線

坐標(biāo)原點(diǎn)到距離的比值為

 

查看答案和解析>>

某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)

2

3

4

5

加工的時(shí)間y(小時(shí))

2.5

3

4

4.5

 

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;

(3)試預(yù)測加工10個零件需要多少時(shí)間?

(注:)

【解析】第一問中利用數(shù)據(jù)描繪出散點(diǎn)圖即可

第二問中,由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回歸方程。

第三問中,將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時(shí))得到結(jié)論。

(1)散點(diǎn)圖如下圖.

………………4分

(2)由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,

=…=0.7,=…=1.05.

=0.7x+1.05.回歸直線如圖中所示.………………8分

(3)將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時(shí)),

∴預(yù)測加工10個零件需要8.05小時(shí)

 

查看答案和解析>>

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
α
=
1
1
,屬于特征值1的一個特征向量為
β
=
&-2

(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點(diǎn)到直線的距離的最小值.
(3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>

一條光線經(jīng)過點(diǎn)P(-2,3)射到x軸上,反射后經(jīng)過點(diǎn)Q(1,1),入射光線所在的直線的方程是
 
,反射光線所在的直線的方程是
 

查看答案和解析>>


同步練習(xí)冊答案