題目列表(包括答案和解析)
(本小題滿(mǎn)分14分)定義,
(1)令函數(shù)的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過(guò)坐標(biāo)原點(diǎn)O作曲線C1的切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值。
(2)當(dāng)
(3)令函數(shù)的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍。
(本小題滿(mǎn)分14分)
定義,,
(Ⅰ)令函數(shù)的圖象為曲線,曲線與軸交于點(diǎn),過(guò)坐標(biāo)原點(diǎn)向曲線作切線,切點(diǎn)為,設(shè)曲線在點(diǎn)之間的曲線段與線段所圍成圖形的面積為,求的值;
(Ⅱ)令函數(shù)的圖象為曲線,若存在實(shí)數(shù)使得曲線在處有斜率為-8的切線,求實(shí)數(shù)的取值范圍;
(Ⅲ)當(dāng) 且時(shí),證明。
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)當(dāng)時(shí),求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說(shuō)明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程!4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M(mǎn)足要求!10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com