(Ⅲ)設(shè)平面PEC的法向量為 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點(diǎn),又二面角P-CD-B為45°.
(1)求證:AF∥平面PEC;
(2)求證:平面PEC⊥平面PCD;
(3)設(shè)AD=2,CD=2
2
,求點(diǎn)A到平面PEC的距離.

查看答案和解析>>

在直角梯形P1DCB中,P1D∥CB,CD∥P1D且P1D=6,BC=3,DC=
6
,A是P1D的中點(diǎn),沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,設(shè)E、F分別是線段AB、PD的中點(diǎn).
(1)求證:AF∥平面PEC;
(2)求平面PEC和平面PAD所成的銳二面角的大;
(3)求點(diǎn)D到平面PEC的距離.

查看答案和解析>>

在直角梯形P1DCB中,P1D//CB,CD//P1D且P1D = 6,BC = 3,DC =,A是P1D的中點(diǎn),沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,設(shè)E、F分別是線段AB、PD的中點(diǎn).

   (1)求證:AF//平面PEC;

   (2)求平面PEC和平面PAD所成的二面角的大;

   (3)求點(diǎn)D到平面PEC的距離.

查看答案和解析>>

如圖所示,四棱錐P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點(diǎn),又二面角P—CD—B為45°.

(1)求證:AF∥平面PEC;

(2)求證:平面PEC⊥平面PCD;

(3)設(shè)AD=2,CD=2,求點(diǎn)A到平面PEC的距離.

查看答案和解析>>

如圖,四棱錐P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分別是AB、PD的中點(diǎn),又二面角PCDB為45°.

(1)求證:AF∥平面PEC;

(2)求證:平面PEC⊥平面PCD;

(3)設(shè)AD=2,CD=2,求點(diǎn)A到平面PEC的距離.

查看答案和解析>>


同步練習(xí)冊(cè)答案