在直角梯形P1DCB中,P1D//CB,CD//P1D且P1D = 6,BC = 3,DC =,A是P1D的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,設(shè)E、F分別是線段AB、PD的中點.
(1)求證:AF//平面PEC;
(2)求平面PEC和平面PAD所成的二面角的大;
(3)求點D到平面PEC的距離.
(1)證明見解析(2)平面PEC和平面PAD所成二面角為30°(3)點D到平面PEC的距離為
①取PC中點M,連結(jié)FM、EM
|
|
|
∴ FM=AE, ∴FMEA為平行四邊形
∴ AF//EM
∵ AF平面PEC,EM平面PEC
∴ AF//平面PEC
②延長DA,CE交于點N,連結(jié)PN
∵ AB⊥PA, AB⊥AD
∴ AB⊥平面PAD ∵AB//DC
|
∴ ∠PDA為二面角P-CD-B的平面角
∴ ∠PDA=45°
∵ PA=AD=3 ∠PDA=45°
∵ PD= ∴PA⊥AD
又 PA⊥AB ∴PA⊥平面ABCD
|
∴ AE=CD ∴AE為△NDC的中位線
∴ AN=AD=PA ∴△PND為Rt△
又 NE=EC= PE=
∴ △PNC為Rt△
∴ PC⊥PN PD⊥PN
∴ ∠CPD為平面PEC和平面PAD所成二面角的平面角
又 PD= CD= PD⊥DC
∴ tan∠CPD===
∴ ∠CPD=30°
∴ 平面PEC和平面PAD所成二面角為30°
③連結(jié)ED
∵ PA⊥平面ABCD
∴ VP-CED=S△CED·PA==
VP-CED=VD-PCE=
設(shè)點D到平面PCE的距離為d.
S△PCE=
VP-PCE=S△DCE·d=
∴ d=
點D到平面PEC的距離為.
科目:高中數(shù)學 來源: 題型:
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年東北師大附中三摸理) (12分)如圖,在直角梯形P1DCB中,P1D∥CB,CD⊥P1D,P1D=6,BC=3,DC=,A是P1D的中點,E是線段AB的中點,沿AB把平面P1AB折起到平面PAB的位置,使二面角P-CD-B成45°角.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求平面PEC和平面PAD所成的銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)求證:AF∥平面PEC;
(2)求PC與底面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com