題目列表(包括答案和解析)
(06年廣東卷)(12分)
A是由定義在上且滿足如下條件的函數(shù)組成的集合:①對任意,都有 ; ②存在常數(shù),使得對任意的,都有
(Ⅰ)設(shè),證明:
(Ⅱ) 設(shè),如果存在,使得,那么這樣的是唯一的;
(Ⅲ) 設(shè),任取,令證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式
(1)設(shè)φ(x)=,x∈[2,4],證明φ(x)∈A;
(2)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(3)設(shè)φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,證明給定正整數(shù)k,對任意的正整數(shù)p,成立不等式|xk+p-xk|≤|x2-x1|.
①對任意x∈[1,2],都有φ(2x)∈(1,2);
②存在常數(shù)L(0<L<1),使得對任意x1、x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(1)設(shè)φ(x)=,x∈[2,4],證明φ(x)∈A;
(2)設(shè)φ(x)∈A,證明如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(3)設(shè)φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,證明給定正整數(shù)k,對任意的正整數(shù)p,成立不等式:|xk+p-xk|≤|x1-x2|.
A是由定義在[2,4]上且滿足如下條件的函數(shù)(x)組成的集合:①對任意的都有(2x);②存在常數(shù)L(0<L<1),使得對任意的x1,x2[1,2],都有|(2x1)- (2 x2)|.
(Ⅰ)設(shè)(x)=證明:(x)A:
(Ⅱ)設(shè)(x),如果存在x0(1,2),使得x0=(2x0),那么這樣的x0是唯一的:
(Ⅲ)設(shè)任取x1(1,2),令xn+1=(2xn),n=1,2……證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式。
(Ⅰ)設(shè)φ(x)=,x∈[2,4],證明:φ(x)∈A.
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.
(Ⅲ)設(shè)φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式|xk+p-xk|≤|x2-x1|.
一、選擇題
題號
1
2
3
4
5
6
7
8
答案
A
C
B
D
A
B
A
B
1. A∵ ∴ 即, ,
∴ 故選A;
4. D.由奇函數(shù)可知,而,則,當(dāng)時,;當(dāng)時,,又在上為增函數(shù),則奇函數(shù)在上為增函數(shù),.
5 A 如圖知是斜邊為3 的等腰直角三角形,是直角邊為1等腰直角三角形,區(qū)域的面積
6. B ,而
所以,得
7. A
,即
8. B ,所以解集為,
又,因此選B。
二、填空題
9. (-,1). 10. . 11. 12. 13. .
14. .
9. ,,
∴點M的直角坐標為(-,1)。
10.
11. 聯(lián)立解方程組解得,
即兩曲線的交點為
12. . ∴,
13. .
14. .依題意得
所以,
三、解答題
15解:解法1:設(shè)矩形欄目的高為a cm,寬為b cm,則ab=9000. ①
廣告的高為a+20,寬為2b+25,其中a>0,b>0.
廣告的面積S=(a+20)(2b+25)
=2ab+40b+25a+500=18500+25a+40b
≥18500+2=18500+
當(dāng)且僅當(dāng)25a=40b時等號成立,此時b=,代入①式得a=120,從而b=75.
即當(dāng)a=120,b=75時,S取得最小值24500.
故廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
解法2:設(shè)廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x-20,其中x>20,y>25
兩欄面積之和為2(x-20),由此得y=
廣告的面積S=xy=x()=x,
整理得S=
因為x-20>0,所以S≥2
當(dāng)且僅當(dāng)時等號成立,
此時有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,
即當(dāng)x=140,y=175時,S取得最小值24500,
故當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.
16. 證明:因為為正實數(shù),由平均不等式可得
即
所以,
而
所以
17. 解:(Ⅰ)
圖像如下:
(Ⅱ)不等式,即,
由得.
由函數(shù)圖像可知,原不等式的解集為
18.解:函數(shù)的定義域為,且
19. (1)A
=
(2)
.
∴
20.解:對任意,,,,所以,對任意的,
,
,所以
0<
,令=,,
,所以.
反證法:設(shè)存在兩個使得,則
由,得,所以,矛盾,故結(jié)論成立。
,所以
+…
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com