20.A是由定義在上且滿足如下條件的函數(shù) 組成的集合:①對任意.都有 , ②存在常數(shù).使得對任意的.都有 查看更多

 

題目列表(包括答案和解析)

(06年廣東卷)(12分)

A是由定義在上且滿足如下條件的函數(shù)組成的集合:①對任意,都有 ; ②存在常數(shù),使得對任意的,都有

(Ⅰ)設(shè),證明:

  (Ⅱ)  設(shè),如果存在,使得,那么這樣的是唯一的;

  (Ⅲ) 設(shè),任取,令證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式

查看答案和解析>>

A是由定義在[2,4]上且滿足如下條件的函數(shù)φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[1,2],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的.

查看答案和解析>>

A是由定義在[2,4]上且滿足如下條件的函數(shù)φ(x)組成的集合:
(1)對任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常數(shù)L(0<L<0),使得對任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)設(shè)φ(x)=
31+x
,x∈[2,4],證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,證明:給定正整數(shù)k,對任意的正整數(shù)p,不等式|xk+p-xk|≤
Lk-1
1-L
|x2-x1|
成立.

查看答案和解析>>

A是由定義在[2,4]上且滿足如下條件的函數(shù)φ(x)組成的集合:
①對任意x∈[1,2],都有φ(2x)∈(1,2) ;
②存在常數(shù)L(0<L<1),使得對任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|,
(Ⅰ)設(shè),證明:φ(x)∈A;
(Ⅱ)設(shè)φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么這樣的x0是唯一的;
(Ⅲ)設(shè)φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式

查看答案和解析>>

20.

A是由定義在[2,4]上且滿足如下條件的函數(shù)(x)組成的集合:①對任意的都有(2x);②存在常數(shù)L(0<L<1),使得對任意的x1,x2[1,2],都有|(2x1)- (2 x2)|.

(Ⅰ)設(shè)(x)=證明:(x)A:

(Ⅱ)設(shè)(x),如果存在x0(1,2),使得x0=(2x0),那么這樣的x0是唯一的:

(Ⅲ)設(shè)任取x1(1,2),令xn+1=(2xn),n=1,2……證明:給定正整數(shù)k,對任意的正整數(shù)p,成立不等式Equation.3。

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

答案

A

C

B

D

A

B

A

B

1. A∵  ∴,

  故選A;

2  C   

3  B  

4. D.由奇函數(shù)可知,而,則,當(dāng)時,;當(dāng)時,,又上為增函數(shù),則奇函數(shù)上為增函數(shù),.

5  A  如圖知是斜邊為3 的等腰直角三角形,是直角邊為1等腰直角三角形,區(qū)域的面積

6. B    ,而

        所以,得

7. A  

      ,即

8. B  ,所以解集為,

,因此選B。

二、填空題

9. (-,1).   10. .   11.    12.    13. .

14. .

9. ,,

∴點M的直角坐標(biāo)為(-,1)。

10.

11.    聯(lián)立解方程組解得,

即兩曲線的交點為

12. . ∴

13. .

14. .依題意得

所以,

三、解答題

15解:解法1:設(shè)矩形欄目的高為a cm,寬為b cm,則ab=9000.      ①

廣告的高為a+20,寬為2b+25,其中a>0,b>0.

廣告的面積S=(a+20)(2b+25)

=2ab+40b+25a+500=18500+25a+40b

≥18500+2=18500+

當(dāng)且僅當(dāng)25a=40b時等號成立,此時b=,代入①式得a=120,從而b=75.

即當(dāng)a=120,b=75時,S取得最小值24500.

故廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.

解法2:設(shè)廣告的高為寬分別為x cm,y cm,則每欄的高和寬分別為x-20,其中x>20,y>25

兩欄面積之和為2(x-20),由此得y=

廣告的面積S=xy=x()=x,

整理得S=

因為x-20>0,所以S≥2

當(dāng)且僅當(dāng)時等號成立,

此時有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,

即當(dāng)x=140,y=175時,S取得最小值24500,

故當(dāng)廣告的高為140 cm,寬為175 cm時,可使廣告的面積最小.

16. 證明:因為為正實數(shù),由平均不等式可得

      即  

      所以,

      而

      所以

17. 解:(Ⅰ)

圖像如下:

(Ⅱ)不等式,即,

由函數(shù)圖像可知,原不等式的解集為

18.解:函數(shù)的定義域為,且

 

19. (1)A

=

(2)

         

          ∴

20.解:對任意,,,,所以,對任意的,

,所以

0<

,令=,

,所以

反證法:設(shè)存在兩個使得,

,得,所以,矛盾,故結(jié)論成立。

,所以

+…


同步練習(xí)冊答案