(Ⅰ)化簡(jiǎn)函數(shù)的表達(dá)式.并求函數(shù)的最小正周期, 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=2cos2x+2
3
sinx•cosx-1(x∈R)

(I)化簡(jiǎn)函數(shù)f(x)的表達(dá)式,并求函數(shù)f(x)的最小正周期和對(duì)稱中心;
(II)作函數(shù)f(x)在[0,π]內(nèi)的圖象.

查看答案和解析>>

設(shè)函數(shù)f(x)=2cos2x+2
3
sinx•cosx+m(m,x∈R)
(1)化簡(jiǎn)函數(shù)f(x)的表達(dá)式,并求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[0,
π
2
]時(shí),求實(shí)數(shù)m的值,使函數(shù)f(x)的值域恰為[
1
2
7
2
].

查看答案和解析>>

設(shè)函數(shù)
(I)化簡(jiǎn)函數(shù)f(x)的表達(dá)式,并求函數(shù)f(x)的最小正周期和對(duì)稱中心;
(II)作函數(shù)f(x)在[0,π]內(nèi)的圖象.

查看答案和解析>>

設(shè)函數(shù)f(x)=
(1)化簡(jiǎn)f(x)的表達(dá)式,求f(x)的定義域,并求出f(x)的最大值和最小值;
(2)若銳角α滿足cosα=,求f(α)的值.

查看答案和解析>>

將函數(shù)的圖像先向右平移個(gè)單位,再向下平移兩個(gè)單位,得到函數(shù)的圖像.

(1)化簡(jiǎn)的表達(dá)式,并求出函數(shù)的表示式;

(2)指出函數(shù)上的單調(diào)性和最大值;

(3)已知,,問(wèn)在的圖像上是否存在一點(diǎn),使得AP⊥BP

 

查看答案和解析>>

 

一、選擇題(每小題5分,共60分)

2,4,6

二、填空題(每小題4分,共16分)

20080924

三、解答題:(本大題共6小題,共74分)

17.解:(Ⅰ)∵

  

∴函數(shù)的最小正周期  

(Ⅱ)∵,  ∴  

  

  

∴函數(shù)時(shí)的值域?yàn)閇-1,2]  

18.解:(Ⅰ)記“任取2個(gè)乒乓球,恰好取得1個(gè)黃色乒乓球”為事件A,則

    

(Ⅱ)記“第一次取得白色乒乓球時(shí),恰好已取出1個(gè)黃色乒乓球”為事件B;記“第一次取得白色乒乓球時(shí),恰好已取出2個(gè)黃色乒乓球”為事件C. 則

    

   

∵事件B與事件C是互斥事件,

∴第一次取得白色乒乓球時(shí),已取出的黃色乒乓球個(gè)數(shù)不少于1個(gè)的概率為

P(B+C)=P(B)+P(C)=   

19.解:(1)∵SD⊥AD,SD⊥AB,AD∩AB=A∴SD⊥平面ABCD,

又∵SD平面SBD,  ∴平面SDB⊥平面ABCD。

   (2)由(1)知平面SDB⊥平面ABCD,

BD為平面SDB與平面ABCD的交線,過(guò)點(diǎn)A作AE⊥DB于E,則AE⊥平面SDB,

由三垂線定理的逆定理得 EF⊥SB,

∴∠AFE為二面角A―SB―D的平面角。

在矩形ABCD中,設(shè)AD=a,則,

在Rt△SBC中,

而在Rt△SAD中,SA=2a,又AB=2a,∴SB2=SA2+AB2,

即△SAB為等腰直角三角形,且∠SAB為直角,

故二面角A―SB―D的大小為  

20.解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意

 

   

   (Ⅱ)∵  

 

∴數(shù)列{bn}的前n項(xiàng)和

      

 

21.解:(Ⅰ)由題,得,設(shè)

  …………①

在雙曲線上,則   …………②

聯(lián)立①、②,解得    

由題意,

∴點(diǎn)T的坐標(biāo)為(2,0)  

   (Ⅱ)設(shè)直線A1P與直線A2Q的交點(diǎn)M的坐標(biāo)為(x,y)

由A1、P、M三點(diǎn)共線,得

   …………③ 

由A2、Q、M三點(diǎn)共線,得

   …………④

聯(lián)立③、④,解得    

在雙曲線上,

∴軌跡E的方程為 

22.解:(Ⅰ)設(shè)P(x,y)是函數(shù)圖象上的任意一點(diǎn),它在函數(shù)圖象上的對(duì)應(yīng)點(diǎn),則由平移公式,得  

    ∴   代入函數(shù)中,得

       

    ∴函數(shù)的表達(dá)式為  

  (Ⅱ)函數(shù)的對(duì)稱軸為

①當(dāng)時(shí),函數(shù)在[]上為增函數(shù),

   

②當(dāng)時(shí),

   

③當(dāng)時(shí),函數(shù)在[]上為減函數(shù),

,應(yīng)舍去     

綜上所述,有   

 


同步練習(xí)冊(cè)答案