所以數(shù)據(jù)在[1,4)∪[7,16)內(nèi)的頻率為. 查看更多

 

題目列表(包括答案和解析)

某市2009年初擁有汽車40萬量,每年年終將有當(dāng)年汽車總量的5%報廢,在第二年年初又將有一部分新車上牌,但為了保持該市空氣質(zhì)量,需要該市的汽車擁有量不超過60萬量,故該市采取限制新上牌車輛數(shù)的措施進行控制,所以該市每年只有b萬輛新上牌車.
(1)求第n年年初該市車輛總數(shù)an(2010年為第一年);
(2)當(dāng)b=4時,試問該項措施能否有效?若有效,說明理由;若無效,請指出哪一年初開始無效.
(參考數(shù)據(jù):lg2=0.30,lg3=0.48,lg19=1.28,lg21=1.32)

查看答案和解析>>

若數(shù)列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來求am,bm的值,其中m為給定的數(shù)據(jù)(m≥2,m∈N).右圖算法中,虛線框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當(dāng)a≠b,5a≠4b時,{an-bn}及{5an-4bn}均為等比數(shù)列,請按答紙題要求,完成一個問題證明,并填空.
證明:{an-bn}是等比數(shù)列,過程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項,以
3
3
為公比的等比數(shù)列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項,以
2
2
為公比的等比數(shù)列
(3)若將an,bn寫成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請回答下面問題:
①寫出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個元素,且該元素為Bn中所有元素的和,請寫出滿足要求的一組P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計算過程如下:

查看答案和解析>>

精英家教網(wǎng)某高中地處縣城,學(xué)校規(guī)定家到學(xué)校的路程在10里以內(nèi)的學(xué)生可以走讀,因交通便利,所以走讀生人數(shù)很多.該校學(xué)生會先后5次對走讀生的午休情況作了統(tǒng)計,得到如下資料:
①若把家到學(xué)校的距離分為五個區(qū)間:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),則調(diào)查數(shù)據(jù)表明午休的走讀生分布在各個區(qū)間內(nèi)的頻率相對穩(wěn)定,得到了如圖所示的頻率分布直方圖;
②走讀生是否午休與下午開始上課的時間有著密切的關(guān)系.下表是根據(jù)5次調(diào)查數(shù)據(jù)得到的下午開始上課時間與平均每天午休的走讀生人數(shù)的統(tǒng)計表.
下午開始上課時間 1:30 1:40 1:50 2:00 2:10
平均每天午休人數(shù) 250 350 500 650 750
(Ⅰ)若隨機地調(diào)查一位午休的走讀生,其家到學(xué)校的路程(單位:里)在[2,6)的概率是多少?
(Ⅱ)如果把下午開始上課時間1:30作為橫坐標0,然后上課時間每推遲10分鐘,橫坐標x增加1,并以平均每天午休人數(shù)作為縱坐標y,試列出x與y的統(tǒng)計表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)
y
與上課時間x之間的線性回歸方程
y
=bx+a;
(Ⅲ)預(yù)測當(dāng)下午上課時間推遲到2:20時,家距學(xué)校的路程在6里路以上的走讀生中約有多少人午休?
(注:線性回歸直線方程系數(shù)公式b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
.)

查看答案和解析>>

在對人們休閑方式的一次調(diào)查中,根據(jù)數(shù)據(jù)建立如下的2×2列聯(lián)表:
休閑
性別
看電視 運動
8 20
16 12
為了判斷休閑方式是滯與性別有關(guān),根據(jù)表中數(shù)據(jù),得到x2=
56×(8×12-20×16)2
28×28×24×32
≈4.667
,因為3.841≤x2≤6.635,所以判定休閑方式與性別有關(guān)系,那么這種判斷出錯的可能性至多為( 。
(參考數(shù)據(jù):P(x2≥3.841)≈0.05,P(x2≥6.635)≈0.01)

查看答案和解析>>

某校從參加高三年級理科綜合物理考試的學(xué)生中隨機抽出名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;

(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的

平均分;

(Ⅲ)若從名學(xué)生中隨機抽取人,抽到的學(xué)生成績在分,在分,

分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學(xué)期望.

【解析】(1)中利用直方圖中面積和為1,可以求解得到分數(shù)在內(nèi)的頻率為

(2)中結(jié)合平均值可以得到平均分為:

(3)中用表示抽取結(jié)束后的總記分x, 學(xué)生成績在的有人,在的有人,在的有人,結(jié)合古典概型的概率公式求解得到。

(Ⅰ)設(shè)分數(shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,則有,可得,所以頻率分布直方圖如右圖.……4分

(求解頻率3分,畫圖1分)

(Ⅱ)平均分為:……7分

(Ⅲ)學(xué)生成績在的有人,在的有人,

的有人.并且的可能取值是.    ………8分

;;

.(每個1分)

所以的分布列為

0

1

2

3

4

…………………13分

 

查看答案和解析>>


同步練習(xí)冊答案