16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問(wèn)題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問(wèn)題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列的通項(xiàng)公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.

(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);

(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長(zhǎng)為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

一.選擇題:

題號(hào)

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空題:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答題:

15.解: ;  ………5分

方程有非正實(shí)數(shù)根

 

綜上: ……………………12分16.解:(I)設(shè)袋中原有個(gè)白球,由題意知

可得(舍去)

答:袋中原有3個(gè)白球. 。。。。。。。。4分

(II)由題意,的可能取值為1,2,3,4,5

 

所以的分布列為:

1

2

3

4

5

。。。。。。。。。9分

(III)因?yàn)榧紫热?所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

答:甲取到白球的概率為.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取、∈(1,+∞),且設(shè),則:

>0,

在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分

(3)當(dāng)直線∈R)與的圖象無(wú)公共點(diǎn)時(shí),=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)證明:∵底面,底面, ∴

   又∵平面,平面,,

    ∴平面;3分

(Ⅱ)解:∵點(diǎn)分別是的中點(diǎn),

,由(Ⅰ)知平面,

平面

,,

為二面角的平面角,

底面,∴與底面所成的角即為,

,∵為直角三角形斜邊的中點(diǎn),

為等腰三角形,且,∴;

(Ⅲ)過(guò)點(diǎn)于點(diǎn),∵底面,

   ∴底面,為直線在底面上的射影,

   要,由三垂線定理的逆定理有要 ,

 設(shè),則由,

 又∴在直角三角形中,,

,

∵ ,

在直角三角形中,,

 ,即時(shí),

(Ⅲ)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,設(shè),則,,設(shè),則

,,,

,時(shí)時(shí),.

 

 

19  證明:(1)對(duì)任意x1, x2∈R, 當(dāng) a0,

=                         =……(3分)

∴當(dāng)時(shí),,即

  當(dāng)時(shí),函數(shù)f(x)是凸函數(shù).   ……(4分)

 (2) 當(dāng)x=0時(shí), 對(duì)于a∈R,有f(x)≤1恒成立;當(dāng)x∈(0, 1]時(shí), 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當(dāng)=1時(shí), 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

由此可知,滿足條件的實(shí)數(shù)a的取值恒為負(fù)數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分

(3)令,∵,∴,……………..(11)分

,則,故;

,則

;,……………..(12)分

,則;∴時(shí),.

綜上所述,對(duì)任意的,都有;……………..(13)分

所以,不是R上的凸函數(shù). ……………..(14)分

對(duì)任意,有

所以,不是上的凸函數(shù). ……………..(14)分

20. 解:(1)設(shè)數(shù)列的前項(xiàng)和為,則

……….4分

(2)為偶數(shù)時(shí),

為奇數(shù)時(shí),

………9分

(3)方法1、因?yàn)?sub>所以

當(dāng),時(shí),,時(shí)

又由,兩式相減得

 所以若,則有………..14分

方法2、由,兩式相減得

………..11分

所以要證明,只要證明

或①由:

所以…………………14分

或②由:

…………………14分

數(shù)學(xué)歸納法:①當(dāng)

當(dāng)

②當(dāng)

當(dāng)

綜上①②知若,則有.

所以,若,則有.。。。。。。。。。14分

 

 


同步練習(xí)冊(cè)答案