6.解析幾何 查看更多

 

題目列表(包括答案和解析)

在幾何中,三條直線兩兩相交可有兩種情況;在函數(shù)中,一次函數(shù)的圖象恰好為直線.請?jiān)谙铝械臋M線上添加恰當(dāng)?shù)臈l件(不重不漏),使得三條直線的解析式分別為:

(1)y1=-x+3,y2=x+1,y3=2x;

(2)y1=2x-3,y2=x+1,y3=-2x+4.

有三個一次函數(shù)y1=ax+b,y2=mx+n,y3=px+q的圖象兩兩相交,則它們的解析式分別為________.

查看答案和解析>>

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個一次函數(shù)的圖象所確定的兩知直線,給出它們平行的定義:
設(shè)一次函數(shù)y=k1x+b(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點(diǎn)A(
9
4
,0
),與精英家教網(wǎng)雙曲線y=
k
x
(x>0)交于點(diǎn)B.
(1)求直線AB的解析式;
(2)若點(diǎn)B的縱坐標(biāo)為m,求雙曲線解析式(用含m的代數(shù)式表示).

查看答案和解析>>

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個一次函數(shù)的圖象所確定的兩知直線,給出它們平行的定義:
設(shè)一次函數(shù)y=k1x+b(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點(diǎn)A(數(shù)學(xué)公式),與雙曲線數(shù)學(xué)公式(x>0)交于點(diǎn)B.
(1)求直線AB的解析式;
(2)若點(diǎn)B的縱坐標(biāo)為m,求雙曲線解析式(用含m的代數(shù)式表示).

查看答案和解析>>

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個一次函數(shù)的圖象所確定的兩知直線,給出它們平行的定義:
設(shè)一次函數(shù)y=k1x+b(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點(diǎn)A(),與雙曲線(x>0)交于點(diǎn)B.
(1)求直線AB的解析式;
(2)若點(diǎn)B的縱坐標(biāo)為m,求雙曲線解析式(用含m的代數(shù)式表示).

查看答案和解析>>

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個一次函數(shù)的圖象所確定的兩知直線,給出它們平行的定義:
設(shè)一次函數(shù)y=k1x+b(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.如圖,將直線y=4x沿y軸向下平移后,得到的直線與x軸交于點(diǎn)A(),與雙曲線(x>0)交于點(diǎn)B.
(1)求直線AB的解析式;
(2)若點(diǎn)B的縱坐標(biāo)為m,求雙曲線解析式(用含m的代數(shù)式表示).

查看答案和解析>>


同步練習(xí)冊答案