1.已知集合若M∩N={-3}.則a的值是 A.-1 B.0 C.1 D.3 查看更多

 

題目列表(包括答案和解析)

已知集合A={1,2,3,…,2n}(n∈N*).對于A的一個(gè)子集S,若存在不大于n的正整數(shù)m,使得對于S中的任意一對元素s1,s2,都有|s1-s2|≠m,則稱S具有性質(zhì)P.
(Ⅰ)當(dāng)n=10時(shí),試判斷集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性質(zhì)P?并說明理由.
(Ⅱ)若n=1000時(shí)
①若集合S具有性質(zhì)P,那么集合T={2001-x|x∈S}是否一定具有性質(zhì)P?并說明理由;
②若集合S具有性質(zhì)P,求集合S中元素個(gè)數(shù)的最大值.

查看答案和解析>>

已知集合M={x|x>3},N={x|x>a},若“x∈M”是“x∈N”的必要不充條件,則a的取值范圍是( 。

查看答案和解析>>

已知集合M={x|3+2x-x2>0},N={x|x>a},若M⊆N,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2,a3,…,am}(m∈N*),且對任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),則稱集合A為集合M的一個(gè)m元基底.
(Ⅰ)分別判斷下列集合A是否為集合M的一個(gè)二元基底,并說明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一個(gè)m元基底,證明:m(m+1)≥n;
(Ⅲ)若集合A為集合M={1,2,3,…,19}的一個(gè)m元基底,求出m的最小可能值,并寫出當(dāng)m取最小值時(shí)M的一個(gè)基底A.

查看答案和解析>>

已知集合M=(0,3),N={m|(x2-x+2)m<(x2-x+2)a,x∈R},若M⊆N,則a的取值范圍是( 。

查看答案和解析>>

 

一、選擇題(本大題共12小題,每題5分,共60分)

1.A    2.B    3.C    4.A    5.D    6.C    7.B    8.C    9.A

10.B   11.(理)C(文)B       12.D

二、填空題(本大題共4小題,每題4分,共16分)

13.                           14.②③                 15.47                    16.□

三、解答題(本大題共6小題,共計(jì)76分)

17.解:

   (1)依題意函數(shù)的圖象按向量平移后得

                                                ………………………2分

       即=                                                ………………………4分

       又

       比較得a=1,b=0                                                                  ………………………6分

   (2)

       =                                                             ………………………9分

      

      

       ∴的單調(diào)增區(qū)間為[,]          ……………………12分

18.解:

   (1)設(shè)連對的個(gè)數(shù)為y,得分為x

       因?yàn)閥=0,1,2,4,所以x=0,2,4,8.

      

    • <abbr id="voroj"><strike id="voroj"><em id="voroj"></em></strike></abbr>

        x

        0

        2

        4

        8

           

               于是x的分布列為

          ……9分

           

           

             (2)Ex=0×+2×+4×+8×=2

                 即該人得分的期望為2分。                                                     ……………………12分

             (文)

             (1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和一個(gè)黑球

                 其概念為                                                     ……………………6分

             (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5

                 次獨(dú)立重復(fù)試驗(yàn),故所求概率為………………………12分

          19.解法一:以D為原點(diǎn),DA,DC,DD1

                 所在直線分別為x軸、y軸、z軸,建

                 立空間直角坐標(biāo)系D―xyz,則

                 A(a,0,0)、B(a,2a,0)、

                 C(0,2a,0)、A1(a,0,a)、

                 D1(0,0,a)。E、P分別是BC、A1D1

                 的中點(diǎn),M、N分別是AE、CD1的中點(diǎn)

                 ∴……………………………………2分

             (1)⊥面ADD1A1

                 而=0,∴,又∵M(jìn)N面ADD1A1,∴MN∥面ADD1A1;………4分

             (2)設(shè)面PAE的法向量為,又

                 則又

                 ∴=(4,1,2),又你ABCD的一個(gè)法向量為=(0,0,1)

                 ∴

                 所以二面角P―AE―D的大小為                        ………………………8分

             (3)設(shè)為平面DEN的法向量

                 又=(),=(0,a),,0,a)

                 ∴所以面DEN的一個(gè)法向量=(4,-1,2)

                 ∵P點(diǎn)到平面DEN的距離為

                 ∴

                

                 所以                                              ……………………12分

                 解法二:

             (1)證明:取CD的中點(diǎn)為K,連接

                 ∵M(jìn),N,K分別為AE,CD1,CD的中點(diǎn)

                 ∴MK∥AD,ND∥DD1,∴MK∥面ADD1A1,NK∥面ADD1A1

                 ∴面MNK∥面ADD1A1,∴MN∥面ADD1A1,                     ………………………4分

             (2)設(shè)F為AD的中點(diǎn),∵P為A1D1的中點(diǎn)

                 ∴PF∥DD1,PF⊥面ABCD

                 作FH⊥AE,交AE于H,連結(jié)PH,則由三垂

                 線定理得AE⊥PH,從而∠PHF為二面角

                 P―AE―D的平面角。

                 在Rt△AAEF中,AF=,EF=2,AE=,

                 從而FH=

                 在Rt△PFH中,tan∠PHF=

                 故:二面角P―AE―D的大小為arctan

             (3)

                 作DQ⊥CD1,交CD1于Q,

                 由A1D1⊥面CDD1C1,得A1D1⊥DQ,∴DQ⊥面BCD1A1。

                 在Rt△CDD1中,

                 ∴  ……………………12分

          20.解:(理)

             (1)函數(shù)的定義域?yàn)椋?,+

                 當(dāng)a=-2e時(shí),            ……………………2分

                 當(dāng)x變化時(shí),,的變化情況如下:

          (0,

          ,+

          0

          極小值

                 由上表可知,函數(shù)的單調(diào)遞減區(qū)間為(0,

                 單調(diào)遞增區(qū)間為(,+

                 極小值是)=0                                                           ……………………6分

             (2)由           ……………………7分

                 又函數(shù)為[1,4]上單調(diào)減函數(shù),

                 則在[1,4]上恒成立,所以不等式在[1,4]上恒成立。

                 即在,[1,4]上恒成立                                           ……………………10分

                 又=在[1,4]上為減函數(shù)

                 ∴的最小值為

                 ∴                                                                            ……………………12分

             (文)(1)∵函數(shù)在[0,1]上單調(diào)遞增,在區(qū)間上單調(diào)遞

                 減,

                 ∴x=1時(shí),取得極大值,

                 ∴

                 ∴4-12+2a=0a=4                                                                                      ………………………4分

             (2)A(x0,f(x0))關(guān)于直線x=1的對稱點(diǎn)B的坐標(biāo)為(2- x0,f(x0

                

                 =

                 ∴A關(guān)于直線x=1的對稱點(diǎn)B也在函數(shù)的圖象上            …………………8分

             (3)函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)交點(diǎn),等價(jià)于方程

                 恰有3個(gè)不等實(shí)根,

                

                 ∵x=0是其中一個(gè)根,

                 ∴方程有兩個(gè)非零不等實(shí)根

                                                 ……………………12分

          21.解:(理)(1)由已知得:

                        

                 ∵                                                     ①…………………2分

                 ∴                                                                 ②

                 ②―①

                 即

                 又

                 ∴                                                                      ……………………5分

                 ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

             (2)∵

                 ∴

                 ∴                   …………………8分

                 兩式相減

                

                 ∴                                                          ……………………10分

                 ∴               ……………………12分

             (文)(1)由已知得:

                

                 ∴

                 ∵                                                     ①…………………2分

                 ∴                                                                 ②

                 ②―①

                 即

                 又

                 ∴                                                                      ……………………5分

                 ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

             (2)∵

                 ∴

                 ∴                   …………………8分

                 兩式相減

                

                 ∴                                                          ……………………10分

                 ∴               ……………………12分

          22.解:(1)

                 設(shè)M(x,y)是曲線C上任一點(diǎn),因?yàn)镻M⊥x軸,

                 所以點(diǎn)P的坐標(biāo)為(x,3y)                                                  …………………2分

                 點(diǎn)P在橢圓,所以

                 因此曲線C的方程是                                           …………………5分

             (2)當(dāng)直線l的斜率不存在時(shí),顯然不滿足條件

                 所以設(shè)直線l的方程為與橢圓交于Ax1y1),Bx2y2),N點(diǎn)所在直線方

                 程為

                 ,由

                                                         ……………………6分

                 由△=………………8分

                 ∵,所以四邊形OANB為平行四邊形              …………………9分

                 假設(shè)存在矩形OANB,則

                

                

                 所以

                 即                                                                   ……………………11分

                 設(shè)N(),由,得

                 ,

                 即N點(diǎn)在直線

                 所以存在四邊形OANB為矩形,直線l的方程為 ……………………14分

           

           

           


          同步練習(xí)冊答案