如圖.一環(huán)形花壇分成四塊.現(xiàn)有4種不同的花供選種.要求在每塊里種1種花.且相鄰的2塊種不同的花.則不同的種法總數(shù)為A.96 B.84 C.60 D.48 查看更多

 

題目列表(包括答案和解析)

已知x取值范圍為[0,10],如圖輸入一個數(shù)x,使得輸出的y滿足6<y≤8的概率為
2
5
2
5

查看答案和解析>>

如圖為一幾何體的展開圖,其中ABCD是邊長為6的正方形,SD=PD=6,CR=SC,AQ=AP,點S,D,A,Q及P,D,C,R共線,沿圖中虛線將它們折疊,使P,Q,R,S四點重合,則需要
24
24
個這樣的幾何體,就可以拼成一個棱長為12的正方體.

查看答案和解析>>

10、如圖表示一位騎自行車者和一位騎摩托車者在相距80km的兩城鎮(zhèn)間旅行的函數(shù)圖象,由圖可知:騎自行車者用了6小時,沿途休息了1小時,騎摩托車者用了2小時.根據(jù)這個函數(shù)圖象,提出關于這兩個旅行者的如下信息:
①騎自行車者比騎摩托車者早出發(fā)了3小時,晚到1小時;
②騎自行車者是變速運動,騎摩托車者是勻速運動;
③騎摩托車者在出發(fā)了1.5小時后,追上了騎自行車者.
其中正確信息的序號是( 。

查看答案和解析>>

精英家教網(wǎng)一個均勻的立方體六個面上分別標有數(shù)1,2,3,4,5,6.如圖是這個立方體表面的展開圖.拋擲這個立方體,則朝上一面上的數(shù)恰好等于朝下一面上的數(shù)的
1
2
的概率是( 。
A、
1
6
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

精英家教網(wǎng)如圖為一幾何體的展開圖,其中ABCD是邊長為6的正方形,SD=PD=6,CR=SC,AQ=AP,點S,D,A,Q及點P,D,C,R共線,沿圖中虛線將它們折疊起來,使P,Q,R,S四點重合,則需要
 
個這樣的幾何體,可以拼成一個棱長為6的正方體.

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,滿分40分.)

題號

1

2

3

4

5

6

7

8

選項

C

A

C

B

D

B

B

A

二、填空題(共7小題,計30分。其中第9、10、11、12小題必做;第13、14、15題選做兩題,若3題全做,按前兩題得分計算。)

9、 4       10、__10__(用數(shù)字作答).11、____。12、___0___。

13、      ;14、___8_____.15、   3   。

 

三、解答題(考生若有不同解法,請酌情給分。

16.解:(1)…………2分

……………………………………3分

………………………………………………5分

(2)…………………………7分

…………………………………9分

………………………………………10分

∴當………………………………12分

 

17.解:⑴、記甲、乙兩人同時參加崗位服務為事件,那么,即甲、乙兩人同時參加崗位服務的概率是.……………………4分

⑵、記甲、乙兩人同時參加同一崗位服務為事件,

那么,…………………………………………………………6分

所以,甲、乙兩人不在同一崗位服務的概率是.………8分

⑶、隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務,則

.所以,

的分布列是:…………………………………………………………………… 10分

1

2

    ∴…………………………………………………………12分

 

18.

解:設2008年末汽車保有量為a1萬輛,以后各年末汽車保有量依次為a2萬輛,a3萬輛,…,每年新增汽車x萬輛。………………………………………………………………1分

a1=30,a2=a1×0.94+x,a3=a2×0.94+x=a1×0.942+x×0.94+x,…

故an=a1×0.94n-1+x(1+0.94+…+0.94n-2

.………………………………………………6分

(1):當x=3萬輛時,an≤30

 則每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求。……………9分

  (2):如果要求汽車保有量不超過60萬輛,即an≤60(n=1,2,3,…)

則,

即.

對于任意正整數(shù)n,

因此,如果要求汽車保有量不超過60萬輛,x≤3.6(萬輛).………………13分

答:若每年新增汽車數(shù)量控制在3萬輛時,汽車保有量能達到要求;每年新增汽車不應超過3.6萬輛,則汽車保有量定能達到要求。………………………………………14分

 

19.解:(1)…………………………………………………………2分

由己知有實數(shù)解,∴,故…………………5分

(2)由題意是方程的一個根,設另一根為

則,∴……………………………………………………7分

∴,

當時,;當時,;

當時,

∴當時,有極大值,又,,

即當時,的量大值為  ………………………10分

∵對時,恒成立,∴,

∴或………………………………………………………………13分

故的取值范圍是  ………………………………………14分

20.解:(1)作MP∥AB交BC于點P,NQ∥AB交BE于點Q,連結(jié)PQ,依題意可得MP∥NQ,且MP=NQ,即MNQP是平行四邊形,

∴MN=PQ.由已知,CM=BN=a,CB=AB=BE=1,

∴AC=BF=,  .

即CP=BQ=.

∴MN=PQ=

(0<a<).…………………………………5分

(2)由(Ⅰ),MN=,所以,當a=時,MN=.

即M、N分別移動到AC、BF的中點時,MN的長最小,最小值為.………8分

(3)取MN的中點G,連結(jié)AG、BG,∵AM=AN,BM=BN,G為MN的中點

∴AG⊥MN,BG⊥MN,∠AGB即為二面角α的平面角,………………………11分

又AG=BG=,所以,由余弦定理有cosα=.

故所求二面角的余弦值為-.………………………………………………………14分

(注:本題也可用空間向量,解答過程略)

21.解:⑴、對任意的正數(shù)均有且.

,…………………………………………………4分

又是定義在上的單增函數(shù),.

當時,,.,.

當時,,

.,

為等差數(shù)列,,. ……………………………6分

⑵、假設存在滿足條件,即

對一切恒成立.

令,

,………………………10分

故,………………………12分

,單調(diào)遞增,,.

.……………………………………………………………14分

 

(考生若有不同解法,請酌情給分。

 

 

 

 

 


同步練習冊答案