∵.∴. 查看更多

 

題目列表(包括答案和解析)

10、,設(shè){an}是正項數(shù)列,其前n項和Sn滿足:4Sn=(an-1)(an+3),則數(shù)列{an}的通項公式an=
2n+1

查看答案和解析>>

精英家教網(wǎng),如圖給出的是計算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一個程序框圖,其中判斷框內(nèi)填入的條件是
 

查看答案和解析>>

5、α,β為兩個互相垂直的平面,a、b為一對異面直線,下列條件:
①a∥α、b?β;②a⊥α.b∥β;
③a⊥α.b⊥β;④a∥α、b∥β且a與α的距離等于b與β的距離,其中是a⊥b的充分條件的有( 。

查看答案和解析>>

,設(shè)f(x)是定義在R上的以3為周期的奇函數(shù),且f(2)=0,則.
(i)f(
32
)=
 

(ii)設(shè)S為f(x)=0在區(qū)間[0,20]內(nèi)的所有根之和,則S的最小值為
 

查看答案和解析>>

,已知y=f(x)是定義在R上的單調(diào)遞減函數(shù),對任意的實數(shù)x,y都有f(x+y)=f(x)f(y)且f(0)=1,數(shù)列{an}滿足a1=4,f(log3-
an+1
4
)f(-1-log3
an
4
)=1
(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn是數(shù)列{an}的前n項和,試比較Sn與6n2-2的大。

查看答案和解析>>

1. 構(gòu)造向量,所以.由數(shù)量積的性質(zhì),得,即的最大值為2.

2. ∵,令,所以,當(dāng)時,,當(dāng)時,,所以當(dāng)時,.

3.∵,∴,,又,∴,則,所以周期.作出上的圖象知:若,滿足條件的)存在,且關(guān)于直線對稱,,關(guān)于直線對稱,∴;若,滿足條件的)存在,且關(guān)于直線對稱,,關(guān)于直線對稱,

4. 不等式)表示的區(qū)域是如圖所示的菱形的內(nèi)部,

當(dāng),點到點的距離最大,此時的最大值為;

當(dāng),點到點的距離最大,此時的最大值為3.

5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有種情況.抽到5 和14的兩人在同一組,有兩種情況:

(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有種情況;

(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有種情況.

于是,抽到5 和14 兩張卡片的兩人在同一組的概率為.

6. ∵,∴,

設(shè),則.

作出該不等式組表示的平面區(qū)域(圖中的陰影部分).

,則,它表示斜率為的一組平行直線,易知,當(dāng)它經(jīng)過點時,取得最小值.

解方程組,得,∴


同步練習(xí)冊答案