例2如圖.拋物線y= -x2+1與x軸的正半軸交于點A.將線段OA的n等分點從左至右依次記為P1,P2,-Pn-1,過這些分點分別作x軸的垂線.與拋物線的交點依次為Q1.Q2.-.Qn-1.從而得到n-1個直角三角形△Q1OP1, Q2P1P2,-, △Qn-1Pn-1Pn-1,當(dāng)n→∞時.這些三角形的面積之和的極限為 . 查看更多

 

題目列表(包括答案和解析)

(理)設(shè)α∈(0,π),函數(shù)f(x)的定義域為[0,1],且f(0)=0,f(1)=1,對定義域內(nèi)任意的x,y,滿足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)試用α表示f(
1
2
),并在f(
1
2
)時求出α的值;
(2)試用α表示f(
1
4
),并求出α的值;
(3)n∈N時,an=
1
2n
,求f(an),并猜測x∈[0,1]時,f(x)的表達(dá)式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若點A、B、C不能構(gòu)成三角形,求實數(shù)m應(yīng)滿足的條件.
(2)若△ABC為直角三角形,求m的取值范圍.

查看答案和解析>>

(2009安徽卷理)(本小題滿分13分)

如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=,AE、CF都與平面ABCD垂直,AE=1,CF=2.

(I)求二面角B-AF-D的大;

(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.

查看答案和解析>>

(06年安徽卷理)多面體上,位于同一條棱兩端的頂點稱為相鄰的,如圖,正方體的一個頂點A在平面內(nèi),其余頂點在的同側(cè),正方體上與頂點A相鄰的三個頂點到的距離分別為1,2和4,P是正方體的其余四個頂點中的一個,則P到平面的距離可能是:

①3;     ②4;    ③5;    ④6;    ⑤7

以上結(jié)論正確的為______________。(寫出所有正確結(jié)論的編號)

查看答案和解析>>

(08年安徽卷理)若A為不等式組表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到1時,動直線xya掃過A中的那部分區(qū)域的面積為            

查看答案和解析>>

(07年安徽卷理)(本小題滿分13分)在醫(yī)學(xué)生物學(xué)試驗中,經(jīng)常以果蠅作為試驗對象,一個關(guān)有6只果蠅的籠子里,不慎混入了兩只蒼蠅(此時籠內(nèi)共有8只蠅子:6只果蠅和2只蒼蠅),只好把籠子打開一個小孔,讓蠅子一只一只地往外飛,直到兩只蒼蠅都飛出,再關(guān)閉小孔.以ξ表示籠內(nèi)還剩下的果蠅的只數(shù).

(Ⅰ)寫出ξ的分布列(不要求寫出計算過程);

(Ⅱ)求數(shù)學(xué)期望;

(Ⅲ)求概率Pξ).

查看答案和解析>>


同步練習(xí)冊答案