6.函數(shù)的簡(jiǎn)圖是 查看更多

 

題目列表(包括答案和解析)

將函數(shù)的圖像先向右平移個(gè)單位,再向下平移兩個(gè)單位,得到函數(shù)的圖像.

(1)化簡(jiǎn)的表達(dá)式,并求出函數(shù)的表示式;

(2)指出函數(shù)上的單調(diào)性和最大值;

(3)已知,問(wèn)在的圖像上是否存在一點(diǎn),使得AP⊥BP

 

查看答案和解析>>

將函數(shù)的圖像先向右平移個(gè)單位,再向下平移兩個(gè)單位,得到函數(shù)的圖像.
(1)化簡(jiǎn)的表達(dá)式,并求出函數(shù)的表示式;
(2)指出函數(shù)上的單調(diào)性和最大值;
(3)已知,,問(wèn)在的圖像上是否存在一點(diǎn),使得AP⊥BP

查看答案和解析>>

右圖是某簡(jiǎn)諧運(yùn)動(dòng)的一段圖象,它的函數(shù)模型是f(x)=Asin(ωx+φ)(x≥0),其中A>0,ω>0,-
π
2
<?<
π
2

(Ⅰ)根據(jù)圖象求函數(shù)y=f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
2
倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在
π
2
 , π]
上的最大值和最小值.

查看答案和解析>>

函數(shù)在區(qū)間的簡(jiǎn)圖是(     )

 

 

查看答案和解析>>

函數(shù)在區(qū)間的簡(jiǎn)圖是( )
A.
B.
C.
D.

查看答案和解析>>

 

一、選擇題

1―12  CBDBA  ACCAD  BA

二、填空題

13.    14.   15.(理)   (文)16.②④

三、解答題

17.解(1)設(shè)向量的夾角

…………………………………………2分

當(dāng)

向量的夾角為;…………………………4分

當(dāng)

向量的夾角為;……………………6分

(2)|對(duì)任意的恒成立,

,

對(duì)任意的恒成立。

恒成立……………………8分

所以…………………………10分

解得:

故所求實(shí)數(shù)的取值范圍是………………12分

18.(理)解:(1)的取值為1,3。

…………………………1分

…………………………3分

的分布列為

1

3

P

 

…………………………5分

………………………………6分

(2)當(dāng)S8=2時(shí),即前8分鐘出現(xiàn)“紅燈”5次和“綠燈”3次,有已知 若第一、三分鐘出現(xiàn)“紅燈”,則其余六分鐘可出現(xiàn)“紅燈”3次………………8分

若第一、二分鐘出現(xiàn)“紅燈”,第三分鐘出現(xiàn)“綠燈”,則其后五分鐘可出現(xiàn)“紅燈”3次…………………………10分

故此時(shí)的概率為……………………12分

(文)解:(1)若第一個(gè)路口為紅燈,則第二個(gè)路口為綠燈的概率為

;…………………………2分

若第一個(gè)路口為綠燈,則第二個(gè)路口為綠燈的概率為…………4分

∴經(jīng)過(guò)第二個(gè)路口時(shí),遇到綠燈的概率是…………6分

(2)若第一個(gè)路口為紅燈,其它兩個(gè)路口為綠燈的概率為

;…………………………8分

若第二個(gè)路口為紅燈,其它兩個(gè)路口為綠燈的概率為:

………………………………10分

若第三個(gè)路口為紅燈,其它兩個(gè)路口為綠燈的概率為:

…………………………11分

∴經(jīng)過(guò)三個(gè)路口,出現(xiàn)一次紅燈,兩次綠燈的概率是………………12分

19.(理)解:(1)求滿足條件①的a的取值范圍,

函數(shù)的定義域?yàn)?sub>取任意實(shí)數(shù)時(shí),

…………………………2分

解得:a<1…………………………3分

求滿足條件②的a的取值范圍

設(shè)……………………4分

可得,

說(shuō)明:當(dāng)

又當(dāng)

∴對(duì)任意的實(shí)數(shù)x,恒有…………………………6分

要使得x取任意實(shí)數(shù)時(shí),不等式恒成立,

須且只須…………………………7分

由①②可得,同時(shí)滿足條件(i)、(ii)的實(shí)數(shù)a的取值范圍為:

…………………………8分

(2)

……………………10分

∴不等式的解集是:

…………………………12分

(文)解:(1)…………4分

(2)解法一  ………………6分

因?yàn)?sub>,所以……………………00分

解得:………………12分

解法二:當(dāng)x=0時(shí),恒成立;………………5分

當(dāng)x>0時(shí),原式或化為,………………9分

因?yàn)?sub>時(shí)取等號(hào))………………11分

    <address id="o15ul"><big id="o15ul"></big></address>

    20.解法一:(1)連結(jié)AC,交BD于0,

    則O為AC的中點(diǎn),連結(jié)EO。

    ∵PA//平面BDE,平面PAC平面BDE=OE,

    ∴PA//OE…………………………2分

    ∴點(diǎn)E是PC的中點(diǎn)!3分

    (2)∵PD⊥底面ABCD,且DC底面ABCD,

    ∴PD⊥DC,△PDC是等腰直角三角形,……………………4分

    而DE是斜邊PC的中線,

    ∴DE⊥PC,  ①

    又由PD⊥平面ABCD得,PD⊥BC。…………………………6分

    ∵底面ABCD是正方形,CD⊥BC,

    ∴BC⊥平面PDC,

    而DE平面PDC,

    ∴BC⊥DE   ② ……………………7分

    由①和②推得DE⊥平面PBC,而PB平面PBC

    ∴DE⊥PB,又DF⊥PB且DEDF=D,

    所以PB⊥平面EFD,…………………………8分

    (3)由(2)知,PB⊥EF,已知PB⊥DF,故∠EFD是二面角C―PB―D的平面角,

    ………………9分

    由(2)知,DF⊥EF,PD⊥DB。

    設(shè)正方形ABCD的邊長(zhǎng)為a,則PD=DC=a,BD=

    ……………………10分

    在Rt△EFD中,

    所以,二面角C―PB―D的大小為……………………12分

     

    解法二:(1)同解法一……………………3分

    (2)如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),

    設(shè)DC=a,依題意得

    P(0,0,a),B(a,a,0),C(0,a,0   ),

    E(0, ),A(a,0,0),D(0,0,0),

    ………………4分

    …………………………6分

    由已知DF⊥PB,且DFDE=D,

    所以PB⊥平面EFD!8分

    (3)由(2)得

    設(shè)平面PBC的法向量為n=(x,y,z),

    m為平面PBD的法向量,由

    平面PBD

    又因?yàn)槎娼荂―PB―D為銳角,所以其大小為……………………12分

    21.解:設(shè)

    因?yàn)閮蓽?zhǔn)線與x軸的交點(diǎn)分別為

     ……………………1分

    由題意知

    ………………………………3分

    則點(diǎn)N的坐標(biāo)為N(),

    即N………………………………4分

    所以………………5分

    ………………………………6分

           當(dāng)x≠0時(shí),代入,=得:=……………………8分

           所以,

           即                                                               …………………10分

           當(dāng)x=0時(shí),點(diǎn)P的坐標(biāo)為P(0,),

           點(diǎn)M的坐標(biāo)滿足條件:=

           點(diǎn)M的坐標(biāo)滿足條件:=

           顯然推出與已知雙曲線中≠0矛盾。

           所以P點(diǎn)的軌跡方程為.(x≠0,y≠0)      ……………………12分

    22.解:

       (1)由………2分

           所以,

    即所求數(shù)列{an}的通項(xiàng)公式為………………4分

       (2)若n為奇數(shù),則…………5分

           =……………………7分

           =4-3                                                                             …………………9分

           若n為偶數(shù),則………………10分

           =            …………………12分

           =4-4                                                                               …………………14分

     

     


    同步練習(xí)冊(cè)答案