5.函數(shù)f(x)=2s1n(2x-)的圖象為C. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

函數(shù)f(x)=
x(2-x)
+
x
的定義域?yàn)?
 

查看答案和解析>>

已知函數(shù)f(x),g(x)滿足f(1)=1,f′(1)=1,g(1)=2,g′(1)=1,則函數(shù)F(x)=
f(x)-2g(x)
的圖象在x=1處的切線方程為
 

查看答案和解析>>

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請(qǐng)證明;否則,說(shuō)明理由.
(Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

函數(shù)f(x)=3cos
πx
2
-log2x
的零點(diǎn)的個(gè)數(shù)是(  )
A、2B、3C、4D、5

查看答案和解析>>

一、選擇題     DBDAC    DCCCD    CB 

<i id="8behg"><meter id="8behg"><dfn id="8behg"></dfn></meter></i>

天星

13.;           14.-10,2;   15.;              16.540

三、簡(jiǎn)答題

17.(1),

          cosC=,C=

   (2)c2=a2+b2-2abcosC,c=,=a2+b2-ab=(a+b)2-3ab.

S=abs1nC=abs1n=ab=

            Ab=6,(a+b)2=+3ab=+18=,a+b=

18.方法一:(1)解:取AD中點(diǎn)O,連結(jié)PO,BO.

              △PAD是正三角形,所以PO⊥AD,…………1分

              又因?yàn)槠矫鍼AD⊥平面ABCD,所以,PO⊥平面ABCD, …………3分

              BO為PB在平面ABCD上的射影, 

所以∠PBO為PB與平面ABCD所成的角.…………4分

              由已知△ABD為等邊三角形,所以PO=BO=

所以PB與平面ABCD所成的角為45°     ………5分

   (2)△ABD是正三角形,所以AD⊥BO,所以AD⊥PB,  ………………6分

              又,PA=AB=2,N為PB中點(diǎn),所以AN⊥PB,    ………………8分

              所以PB⊥平面ADMN.              ………………9分

   (3)連結(jié)ON,因?yàn)镻B⊥平面ADMN,所以O(shè)N為PO在平面ADMN上的射影,

              因?yàn)锳D⊥PO,所以AD⊥NO,             ………………11分

              故∠PON為所求二面角的平面角.            ………………12分

              因?yàn)椤鱌OB為等腰直角三角形,N為斜邊中點(diǎn),所以∠PON=45°,

19.(1)隨意抽取4件產(chǎn)品檢查是隨機(jī)事件,而第一天有9件正品

           第一天通過(guò)檢查的概率為               ……5分

(2)同(1),第二天通過(guò)檢查的概率為           ……7分

          因第一天,第二天是否通過(guò)檢查相互獨(dú)立

          所以,兩天全部通過(guò)檢查的概率為:           ……10分

(3)記得分為,則的值分別為0,1,2

                             ……11分

                            ……12分

                                     ……13分

因此,    

20.(1)yn=2logaxn,yn+1=2logaxn+1 ,yn+1 ? yn=2[logaxn+1 ? logaxn]=2loga

{xn}為等比數(shù),為定值,所以{yn}為等差數(shù)列

又因?yàn)閥6- y3=3d=-6,d=-2,y1=y3-2d =22,

Sn=22n+= - n2+23n,故當(dāng)n=11或n=12時(shí),Sn取得最大值132

(2)yn=22+(n-1)(-2)=2logaxn,xn=a12n>1

當(dāng)a>1時(shí),12-n>0,   n<12;當(dāng)0<a<1時(shí),12-n<0   n>12,

              所以當(dāng)0<a<1時(shí),存在M=12,當(dāng)n>M時(shí),xn>1恒成立。

21.(1)設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

,解得,所以

當(dāng)且僅當(dāng)時(shí),取到最大值

(2)由,

.  ②

設(shè)的距離為,則,又因?yàn)?sub>,

所以,代入②式并整理,得

解得,,代入①式檢驗(yàn),,

故直線的方程是

,或

22.(1)由K=e得f(x)=ex-ex, 所以f’(x)=ex-e. 由f’(x)>0得x>1,故f(x)的單調(diào)增區(qū)間

為(1,+∞),由f’(x)<0得x<1,故f(x)的單調(diào)遞減區(qū)間為(-∞,1)(3分)

   (2)由f(|x|)>0對(duì)任意x∈R成立等價(jià)于f(x)>0對(duì)任意x≥0成立。由f’(x)=ex-k=0得x=lnk.  

①當(dāng)k∈(0,1) 時(shí) ,f’(x)=ex-k ≥1-k≥0(x>0),此時(shí)f(x)在(0,+∞上單調(diào)遞增,故f(x)

≥f(0)==1>),符合題意。②當(dāng)k∈(1,+∞)時(shí),lnk>0,當(dāng)X變化時(shí),f’(x)、f(x)的變化情況

如下表:

X

(0,lnk)

lnk

(lnk,+ ∞)

f’(x)

0

+

f(x)

單調(diào)遞減

極小值

單調(diào)遞增

 

 

 

由此可得,在(0,+∞)上f(x)≥f(lnk)=k-lnk.依題意,k-klnk>0,又k>1,所以1<k<e.

綜上所述,實(shí)數(shù)k的取值范圍是0<k<e.  (8分)

    (3)因?yàn)镕(x)=f(x)+f(-x)=ex+ex,所以F(x1)F(x2)=

,

所以F(1)F(    n)>en+1+2,F(2)F(n-1)>en+1+2……F(n)F(1)>en+1+2.

由此得,[F(1)F(2)…F(n)]2=[F(1)F(n)][F(2)F(n-1)]…[F(n)F(1)]>(en+1+2)n

故F(1)F(2)…F(n)>(en+1+2) ,n∈N*     …….12分

 


同步練習(xí)冊(cè)答案
    <i id="8behg"><dfn id="8behg"><p id="8behg"></p></dfn></i>

      <track id="8behg"></track>