成等比數(shù)列.且公比為---4分---6分 查看更多

 

題目列表(包括答案和解析)

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,,,…,…,稱之為數(shù)列{an}的一個子數(shù)列.設數(shù)列{an}是一個公差不為零的等差數(shù)列,且a3=6,取n1=1,n2=3.

(Ⅰ)若a1=4,求正整數(shù)m,使,,am成等比數(shù)列;

(Ⅱ)若a1=4,那么{an}是否存在無窮等比子數(shù)列{}?請說明理由;

(Ⅲ)若{an}存在等比子數(shù)列,,,求整數(shù)a1的值.

查看答案和解析>>

已知某數(shù)列的前三項分別是下表第一、二、三行中的某一個數(shù),且前三項中任何兩個數(shù)不在下表的同一列.
第一列 第二列 第三列
第一行 3 2 10
第二行 14 4 6
第三行 18 9 8
若此數(shù)列是等差數(shù)列,記作{an},若此數(shù)列是等比數(shù)列,記作{bn}.
(I)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(II)將數(shù)列{an}的項和數(shù)列{bn}的項依次從小到大排列得到數(shù)列{cn},數(shù)列{cn}的前n項和為Sn,試求最大的自然數(shù)M,使得當n≤M時,都有Sn≤2012.
(Ⅲ)若對任意n∈N,有an+1bn+λbnbn+1≥anbn+1成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

從數(shù)列中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列的一個子數(shù)列.

     設數(shù)列是一個首項為、公差為的無窮等差數(shù)列.

(1)若,,成等比數(shù)列,求其公比

(2)若,從數(shù)列中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為的無窮等比子數(shù)列,請說明理由.

(3)若,從數(shù)列中取出第1項、第項(設)作為一個等比數(shù)列的第1項、第2項,試問當且僅當為何值時,該數(shù)列為的無窮等比子數(shù)列,請說明理由.

 

 

 

 

 

 

 

查看答案和解析>>

統(tǒng)計某校高三年級100名學生的數(shù)學月考成績,得到樣本頻率分布直方圖如下圖所示,已知前4組的頻數(shù)分別是等比數(shù)列{an}的前4項,后6組的頻數(shù)分別是等差數(shù)列{bn}的前6項,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設m、n為該校學生的數(shù)學月考成績,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>

(2012•藍山縣模擬)統(tǒng)計某校高三年級100名學生的數(shù)學月考成績,得到樣本頻率分布直方圖如下圖所示,已知前4組的頻數(shù)分別是等比數(shù)列{an}的前4項,后6組的頻數(shù)分別是等差數(shù)列{bn}的前6項,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設m、n為該校學生的數(shù)學月考成績,且已知m、n∈[70,80)∪[140,150],求事件|m-n|>10”的概率.

查看答案和解析>>


同步練習冊答案