其中真命題的序號為 ; 查看更多

 

題目列表(包括答案和解析)

①命題“對任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函數(shù)f(x)=2x-x2的零點有2個;
③若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a=0;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
x
-x
sinxdx;
⑤若函數(shù)f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為(1,8).
其中真命題的序號是
①③
①③
(寫出所有正確命題的編號).

查看答案和解析>>

已知命題“非空集合M的元素都是集合P的元素”是假命題,那么下列命題:
①M中的元素都不是P的元素;
②M中有不屬于P的元素;
③M中有P的元素;
④M中元素不都是P的元素.
其中真命題的序號是
②④
②④
(寫出你認為是真命題的所有序號)

查看答案和解析>>

已知命題“非空集合M的元素都是集合P的元素”是假命題,那么下列命題:
①M中的元素都不是P的元素;
②M中有不屬于P的元素;
③M中有P的元素;
④M中元素不都是P的元素.
其中真命題的序號是______(寫出你認為是真命題的所有序號)

查看答案和解析>>

下列命題:
①冪函數(shù)都具有奇偶性; 
②命題P:?x∈[-1,1],滿足,使命題P為真的實數(shù)a的取值范圍為a<3;
③代數(shù)式的值與角a有關(guān);
④將函數(shù)的圖象向左平移個單位長度后得到的圖象所對應的函數(shù)是奇函數(shù); 
⑤已知數(shù)列{an}滿足:a1=m,a2=n,an+2=an+1-an(n∈N),記Sn=a1+a2+…an,則S2011=m;
其中正確的命題的序號是      (請把正確命題的序號全部寫出來)

查看答案和解析>>

下列命題:
①冪函數(shù)都具有奇偶性; 
②命題P:?x∈[-1,1],滿足,使命題P為真的實數(shù)a的取值范圍為a<3;
③代數(shù)式的值與角a有關(guān);
④將函數(shù)的圖象向左平移個單位長度后得到的圖象所對應的函數(shù)是奇函數(shù); 
⑤已知數(shù)列{an}滿足:a1=m,a2=n,an+2=an+1-an(n∈N),記Sn=a1+a2+…an,則S2011=m;
其中正確的命題的序號是      (請把正確命題的序號全部寫出來)

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分。

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標系如圖所示,

則A(-4,0),N(4,0),設P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標得:        

整理得:                        

                            

所以動點P的軌跡是以點

(理)解:(I)當a=1時  

                            

 或         

                               

(II)原不等式              

 

當且僅當

                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                      

19  (文)解:(I)當a=1時  

                            

 或         

                              

(II)原不等式              

 

當且僅當

                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標系如圖所示,

則A(-4,0),N(4,0),設P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標得:        

整理得:                       

                            

所以動點P的軌跡是以點

20  (文)解:(Ⅰ)設    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                             

(理)解:(I)設       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習冊答案