題目列表(包括答案和解析)
(08年豐臺區(qū)統(tǒng)一練習(xí)一文)(14分)
已知函數(shù),數(shù)列是公差為d的等差數(shù)列,是公比為q
()的等比數(shù)列.若
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)n均有,求 的值.
(本題滿分16分) 已知數(shù)列是公差為的等差數(shù)列,數(shù)列是公比為的(q∈R)的等比數(shù)列,若函數(shù),且,,,
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,對一切,都有成立,求
(本小題滿分16分)
已知函數(shù),數(shù)列是公差為的等差數(shù)列,是公比為的等比數(shù)列.若
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)均有,求 的值;
(Ⅲ)試比較與的大小.
(本小題滿分14分)Ks**5u
已知數(shù)列的前項(xiàng)和為,,若數(shù)列是公比為的等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),,求數(shù)列的前項(xiàng)和.
(本題滿分14分)已知數(shù)列的前項(xiàng)和為,,若數(shù)列是公比為的等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),,求數(shù)列的前項(xiàng)和.
一、選擇題:(本大題共10小題,每小題5分,共50分)
1 B
三、解答題:(本大題共6個解答題,滿分76分,)
線為y軸建立平面直角坐標(biāo)系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標(biāo)得:
整理得:
即
所以動點(diǎn)P的軌跡是以點(diǎn)
(理)解:(I)當(dāng)a=1時
或或
或
(II)原不等式
設(shè)有
當(dāng)且僅當(dāng)
即時
解得
若由方程組解得,可參考給分
(理)解:(Ⅰ)設(shè) (a≠0),則
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無極值
∴方程
得
或或
或
(II)原不等式
設(shè)有
當(dāng)且僅當(dāng)
即時
(理)解:以AN所在直線為x軸,AN的中垂
線為y軸建立平面直角坐標(biāo)系如圖所示,
則A(-4,0),N(4,0),設(shè)P(x,y)
由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:
代入坐標(biāo)得:
整理得:
即
所以動點(diǎn)P的軌跡是以點(diǎn)
…… ①
…… ②
又∵有兩等根
∴…… ③
由①②③得
又∵
∴a<0, 故
∴
(Ⅱ)
∵g(x)無極值
∴方程
得
(理)解:(I)設(shè) (1)
又故 (2)
由(1),(2)解得
(II)由向量與向量的夾角為得
由及A+B+C=知A+C=
則
由0<A<得,得
故的取值范圍是
Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3
所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進(jìn)而可知an+3
所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,
所以3+an=6,即an=3()
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com