所以數(shù)列是等差數(shù)列. .4分 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列{an}的首項為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)數(shù)學公式的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設{an}的公差d=1,是否存在這樣的正整數(shù)n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理)設{an}的公差d(d>0)為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?并請說明理由.
(4)(文)設{an}的公差d=1,是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>

已知等差數(shù)列{an}的首項為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設{an}的公差d=1,是否存在這樣的正整數(shù)n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理)設{an}的公差d(d>0)為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?并請說明理由.
(4)(文)設{an}的公差d=1,是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>

下列五個命題:

①對于回歸直線方程,時,.

②頻率分布直方圖中各小長方形的面積等于相應各組的頻數(shù).

③若單調遞增,則.

④樣本的平均值為,方差為,則 的平均值為,方差為.

⑤甲、乙兩個乒乓球運動員進行乒乓球比賽,已知每一局甲勝的概率為0.6,乙勝的概率為0.4,比賽時可以用三局二勝或五局三勝制,相對于用五局三勝制,三局二勝制乙獲勝的可能性更大.

其中正確結論的是         (填上你認為正確的所有序號).

 

查看答案和解析>>

下列五個命題:
①對于回歸直線方程,時,.
②頻率分布直方圖中各小長方形的面積等于相應各組的頻數(shù).
③若單調遞增,則.
④樣本的平均值為,方差為,則 的平均值為,方差為.
⑤甲、乙兩個乒乓球運動員進行乒乓球比賽,已知每一局甲勝的概率為0.6,乙勝的概率為0.4,比賽時可以用三局二勝或五局三勝制,相對于用五局三勝制,三局二勝制乙獲勝的可能性更大.
其中正確結論的是         (填上你認為正確的所有序號).

查看答案和解析>>

下列五個命題:
①對于回歸直線方程,時,.
②頻率分布直方圖中各小長方形的面積等于相應各組的頻數(shù).
③若單調遞增,則.
④樣本的平均值為,方差為,則 的平均值為,方差為.
⑤甲、乙兩個乒乓球運動員進行乒乓球比賽,已知每一局甲勝的概率為0.6,乙勝的概率為0.4,比賽時可以用三局二勝或五局三勝制,相對于用五局三勝制,三局二勝制乙獲勝的可能性更大.
其中正確結論的是         (填上你認為正確的所有序號).

查看答案和解析>>


同步練習冊答案