11. , 12. ,13. , 14. ,15. , 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)某學校課題組為了研究學生的數(shù)學成績與物理成績之間的關(guān)系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學

成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

 

 

若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.

(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):

 

數(shù)學成績優(yōu)秀

數(shù)學成績不優(yōu)秀

合   計

物理成績優(yōu)秀

 

 

 

物理成績不優(yōu)秀

 

 

 

合   計

 

 

20

(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認為學生的數(shù)學成績與物理成績之間有關(guān)系?

(3)若從這20個人中抽出1人來了解有關(guān)情況,求抽到的學生數(shù)學成績與物理成績至少有一門不優(yōu)秀的概率.

參考數(shù)據(jù)及公式:

①隨機變量,其中為樣本容量;

②獨立檢驗隨機變量的臨界值參考表:

0.010

0.005

0.001

6.635

7.879

10.828

 

 

 

 

 

查看答案和解析>>

(本題滿分12分)某學校課題組為了研究學生的數(shù)學成績與物理成績之間的關(guān)系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:

序號
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
數(shù)學
成績
95
75
80
94
92
65
67
84
98
71
67
93
64
78
77
90
57
83
72
83
物理
成績
90
63
72
87
91
71
58
82
93
81
77
82
48
85
69
91
61
84
78
86
 
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
 
數(shù)學成績優(yōu)秀
數(shù)學成績不優(yōu)秀
合  計
物理成績優(yōu)秀
 
 
 
物理成績不優(yōu)秀
 
 
 
合  計
 
 
20
(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認為學生的數(shù)學成績與物理成績之間有關(guān)系?
(3)若從這20個人中抽出1人來了解有關(guān)情況,求抽到的學生數(shù)學成績與物理成績至少有一門不優(yōu)秀的概率.
參考數(shù)據(jù)及公式:
①隨機變量,其中為樣本容量;
②獨立檢驗隨機變量的臨界值參考表:

0.010
0.005
0.001

6.635
7.879
10.828
 

查看答案和解析>>

物理學家JamesDForbes試圖通過水的沸點來估計海拔高度,他知道通過氣壓計測得的大氣壓可用于得到海拔高度,氣壓越低,高度越高,他測量了17個地方水的沸點(℉)及大氣壓數(shù)據(jù),并且對數(shù)據(jù)作了簡單的處理,得到了較為明確的數(shù)學關(guān)系,所提數(shù)據(jù)如下:


測點編號

沸點(℉)

氣壓

1g(氣壓)

100´1g(氣壓)

1

194.5

20.79

1.3179

131.79

2

194.3

20.79

1.3179

131.79

3

197.9

22.40

1.3502

135.02

4

198.4

22.67

1.3555

135.55

5

199.4

23.15

1.3646

136.46

6

199.9

23.35

1.3683

136.83

7

200.9

23.89

1.3782

137.82

8

201.1

23.99

1.3800

138.00

9

201.4

24.02

1.3805

138.05

10

201.3

24.01

1.3806

138.06

11

203.6

25.14

1.4004

140.04

12

204.6

26.57

1.4244

142.44

13

209.5

28.49

1.4547

145.47

15

208.6

27.76

1.4434

144.34

15

210.7

29.04

1.4630

146.30

16

211.9

29.88

1.4754

147.54

17

212.2

30.06

1.4780

147.80

1)試作出氣壓y=100´1g(氣壓)關(guān)于沸點(℉)的散點圖;

2)根據(jù)散點圖判斷變量xy的相關(guān)關(guān)系;計算變量xy的相關(guān)系數(shù);

3)建立變量xy的一元線性回歸方程。

查看答案和解析>>

物理學家JamesDForbes試圖通過水的沸點來估計海拔高度,他知道通過氣壓計測得的大氣壓可用于得到海拔高度,氣壓越低,高度越高,他測量了17個地方水的沸點(℉)及大氣壓數(shù)據(jù),并且對數(shù)據(jù)作了簡單的處理,得到了較為明確的數(shù)學關(guān)系,所提數(shù)據(jù)如下:


測點編號

沸點(℉)

氣壓

1g(氣壓)

100´1g(氣壓)

1

194.5

20.79

1.3179

131.79

2

194.3

20.79

1.3179

131.79

3

197.9

22.40

1.3502

135.02

4

198.4

22.67

1.3555

135.55

5

199.4

23.15

1.3646

136.46

6

199.9

23.35

1.3683

136.83

7

200.9

23.89

1.3782

137.82

8

201.1

23.99

1.3800

138.00

9

201.4

24.02

1.3805

138.05

10

201.3

24.01

1.3806

138.06

11

203.6

25.14

1.4004

140.04

12

204.6

26.57

1.4244

142.44

13

209.5

28.49

1.4547

145.47

15

208.6

27.76

1.4434

144.34

15

210.7

29.04

1.4630

146.30

16

211.9

29.88

1.4754

147.54

17

212.2

30.06

1.4780

147.80

1)試作出氣壓y=100´1g(氣壓)關(guān)于沸點(℉)的散點圖;

2)根據(jù)散點圖判斷變量xy的相關(guān)關(guān)系;計算變量xy的相關(guān)系數(shù);

3)建立變量xy的一元線性回歸方程。

查看答案和解析>>

觀察下列不等式:
1
1×2
<1;
1
1×2
+
1
2×3
2
;
1
1×2
+
1
2×3
+
1
3×4
3
;…
則第5個不等式為
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
5
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
5

查看答案和解析>>

一、          選擇題:CACDA,ADCBB.

二、          填空題:11.(-4,2)   12.   13.-4    14.  12          15. 

三、解答題(16~18題,每題13分,19-21題12分,共75分)

16.解:∵

       ∴

    

17.證明一:(利用共線向量的判定定理證明)

作為基底,有:, ,從而, 所以A、E、F共線。

證明二:(利用三點共線的判定定理證明)

,而:,所以A、E、F共線。

(可以建立坐標系,利用求出等比分點坐標公式求出E、F的坐標,再證明A、E、F共線)

18.(1)f(x)=sin2x-(1+cos2x)+ sin2x-cos2x

    =sin(2x-)  5分                 ∴T==π   2分                                            

(2)函數(shù)y=f(x)的圖象按=(φ,0)(φ>0)平移后,得y=sin(2(x-φ)-)    2分,此函數(shù)圖象對稱軸方程為2(x-φ)-=kπ+  k∈Z ,又f(x)平移后關(guān)于y軸對稱,∴x=0滿足上式有2(0-φ)-=kπ+,∴φ=-π-   k∈Z            2分

∵φ>0∴當k=-1時,φmin     2分                  

19.(1)由已知得=(sinθ,2)-(-2,co sθ)=(sinθ+2,2-cosθ)      1分     ∵     ∴?()=0

∴(cosθ,sinθ)(sinθ+2,2-cosθ)=0

∴cosθ(sinθ+2)+sinθ(2-cosθ)=0      2分

∴2cosθ+2sinθ=0     ∴tanθ=-1   ∵θ∈(-π,π)

∴θ=-或θ=     3分

(2)由已知=(cosθ+sinθ+2,sinθ+2-cosθ) 1分

 ∴||2=(cosθ+sinθ+2)2+(sinθ+2-cosθ)2=10+8sinθ 2分

∵||≤  ∴10+8sinθ≤14   ∴sinθ≤  ∵θ∈(-π,π)

∴θ∈  3分

20.輪船從點C到點B耗時60分鐘,從點B到點E耗時20分鐘,而船始終勻速,可見BC=3EB                                                2分

   設(shè)EB=x,則BC=3x,由條件知∠BAE=60°,在△ABE中,由正弦定理得    ①

   在△ABC中,由正弦定理得   、       2分

   由條件∠BAC=30°+30°=60° ∴sin∠BAC=sin∠BAE

   又∠ABC+∠ABE=180°        ∴sin∠BAC=sin(180°-∠ABC)=sin∠ABE  2分

   結(jié)合①②得   ∴AC=3AE  2分                          

   在△ACE中,由余弦定理,得

 CE2=AC2+AE2-2AC?AE?cos120°=9AE2+AE2+3AE2=13AE2=13×∴CE=20     2分  ∴BC=15  ∴船速v=15km/t    2分

21.解: 可以組建命題一:△ABC中,若a、b、c成等差數(shù)列,求證:(1)0<B≤

(2);

命題二:△ABC中,若a、b、c成等差數(shù)列求證:(1)0<B≤

(2)1<

命題三:△ABC中,若a、b、c成等差數(shù)列,求證:(1)

(2)1<

命題四:△ABC中,若a、b、c成等比數(shù)列,求證:(1)0<B≤

(2)1<

………………………………………………………………………………………………6分

下面給出命題一、二、三的證明:

(1)∵a、b、c成等差數(shù)列∴2b=a+c,∴b=

且B∈(0,π),∴0<B≤

(2)

(3)

∵0<B≤

下面給出命題四的證明:

(4)∵a、b、c成等比數(shù)列∴b2=a+c,

且B∈(0,π),∴0<B≤…14分

評分時若構(gòu)建命題的結(jié)論僅一個但給出了正確證明,可判7分;若構(gòu)建命題完全正確但論證僅正確給出一個,可判10分;若組建命題出現(xiàn)了錯誤,應(yīng)判0分,即堅持錯不得分原則

 

 


同步練習冊答案