(2)證明:數(shù)列為等比數(shù)列, 查看更多

 

題目列表(包括答案和解析)

等比數(shù)列{an}單調(diào)遞增,且滿足:a1+a6=33,a3a4=32.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足:b1=1且n≥2時(shí),a2,abn,a2n-2成等比數(shù)列,Tn為{bn}前n項(xiàng)和,cn=
Tn+1
Tn
+
Tn
Tn+1
,證明:2n<c1+c2+…+cn<2n+3(n∈N*).

查看答案和解析>>

等比數(shù)列{cn}滿足cn+1+cn=5•22n-1,n∈N*,數(shù)列{an}滿足an=log2cn
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.求證:Tn
1
2

(Ⅲ)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n 的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N+,點(diǎn)(n,Sn),均在函數(shù)y=2x+r(其中r為常數(shù))的圖象上.
(1)求r的值;
(11)記bn=2(log2an+1)(n∈N+
證明:對(duì)任意的n∈N+,不等式
b1+1
b1
b2+1
b2
bn+1
bn
n+1
成立.

查看答案和解析>>

等比數(shù)列{}的前n項(xiàng)和為, 已知對(duì)任意的,點(diǎn),均在函數(shù)均為常數(shù))的圖像上.

(1)求r的值;     

(11)當(dāng)b=2時(shí),記  用數(shù)學(xué)歸納法證明:對(duì)任意的

不等式成立

查看答案和解析>>

等比數(shù)列{an}單調(diào)遞增,且滿足:a1+a6=33,a3a4=32.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足:b1=1且n≥2時(shí),數(shù)學(xué)公式成等比數(shù)列,Tn為{bn}前n項(xiàng)和,數(shù)學(xué)公式,證明:2n<c1+c2+…+cn<2n+3(n∈N*).

查看答案和解析>>

一、填空題

1.[]                   2.180                         3.40                   4.5                     5.

6.15                          7.30                          8.4                     9.                10.

11.(0 ,)            12.              13.                 14.4

二、解答題

15.(1)

                           

             

              (舍去)……………………………………………………7分

(2)

              …………………………………………………………………14分

16.

          所以O(shè)E//平面AA1B1B……………………………………………………………14分

17.

18.解:(1)為圓周的點(diǎn)到直線的距離為-------2分

設(shè)的方程為

的方程為----------------------------------------------------------------5分

(2)設(shè)橢圓方程為,半焦距為c,則

橢圓與圓O恰有兩個(gè)不同的公共點(diǎn),則 ------------------------------6分

當(dāng)時(shí),所求橢圓方程為;-------------8分

當(dāng)時(shí),

所求橢圓方程為-------------------------------------------------------------10分

(3)設(shè)切點(diǎn)為N,則由題意得,在中,,則,

N點(diǎn)的坐標(biāo)為,------------------- 11分

若橢圓為其焦點(diǎn)F1,F2

分別為點(diǎn)A,B故,-----------------------------------13分

若橢圓為,其焦點(diǎn)為,

此時(shí)    -------------------------------------------15分

 

 

 

 

 

 

 

 

 

 

19.

 

第Ⅱ卷(附加題)參考答案

21.(1)                                     ………………………………………………4分

   (2) 時(shí)對(duì)應(yīng)的向量為 ,時(shí)對(duì)應(yīng)的向量為……10分

 

22.解:(1)由方程的(2)式平方減去(1)式得:  5分

(2)曲線的焦點(diǎn)到準(zhǔn)線的距離為,離心率為

所以曲線的極坐標(biāo)方程為                     10分

23.解:(1)賦值法:分別令,,得 -----2分

(2),-------------------------------------------------6分

(3),的系數(shù)為:

所以,當(dāng)時(shí),展開式中的系數(shù)最小,為81.----10分

24.

 


同步練習(xí)冊(cè)答案