(1)如果.試求, 查看更多

 

題目列表(包括答案和解析)

如果由數列{an}生成的數列{bn}滿足對任意的n∈N*均有bn+1<bn,其中bn=an+1-an,則稱數列{an}為“Z數列”.
(Ⅰ)在數列{an}中,已知an=-n2,試判斷數列{an}是否為“Z數列”;
(Ⅱ)若數列{an}是“Z數列”,a1=0,bn=-n,求an;
(Ⅲ)若數列{an}是“Z數列”,設s,t,m∈N*,且s<t,求證:at+m-as+m<at-as

查看答案和解析>>

如果存在常數a使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)若有窮遞增數列{bn}是“兌換系數”為a的“兌換數列”,求證:數列{bn}的前n項和Sn=
n2
•a
;
(3)已知有窮等差數列{cn}的項數是n0(n0≥3),所有項之和是B,試判斷數列{cn}是否是“兌換數列”?如果是的,給予證明,并用n0和B表示它的“兌換系數”;如果不是,說明理由.

查看答案和解析>>

如果項數均為n(n≥2,n∈N+)的兩個數列{an},{bn}滿足ak-bk=k(1,2,…,n),且集合{a1,a2,…,an,b1,b2,…,bn}={1,2,3,…,2n},則稱數列{an},{bn}是一對“n項相關數列”.
(Ⅰ)設{an},{bn}是一對“4項相關數列”,求a1+a2+a3+a4和b1+b2+b3+b4的值,并寫出一對“4項相關數列”{an},{bn};
(Ⅱ)是否存在“15項相關數列”{an},{bn}?若存在,試寫出一對{an},{bn};若不存在,請說明理由;
(Ⅲ)對于確定的n,若存在“n項相關數列”,試證明符合條件的“n項相關數列”有偶數對.

查看答案和解析>>

如果甲乙兩個乒乓球選手進行比賽,而且他們在每一局中獲勝的概率都是,規(guī)定使用“七局四勝制”,即先贏四局者勝.

(1)試分別求甲打完4局、5局才獲勝的概率;

(2)設比賽局數為ξ,求ξ的分布列及期望.

 

查看答案和解析>>

如果項數均為的兩個數列滿足且集合,則稱數列是一對“項相關數列”.
(Ⅰ)設是一對“4項相關數列”,求的值,并寫出一對“
關數列”;
(Ⅱ)是否存在“項相關數列”?若存在,試寫出一對;若不存在,請說明理由;
(Ⅲ)對于確定的,若存在“項相關數列”,試證明符合條件的“項相關數列”有偶數對.

查看答案和解析>>

一、填空題

1.[]                   2.180                         3.40                   4.5                     5.

6.15                          7.30                          8.4                     9.                10.

11.(0 ,)            12.              13.                 14.4

二、解答題

15.(1)

                           

             

              (舍去)……………………………………………………7分

(2)

              …………………………………………………………………14分

16.

          所以OE//平面AA1B1B……………………………………………………………14分

17.

18.解:(1)為圓周的點到直線的距離為-------2分

的方程為

的方程為----------------------------------------------------------------5分

(2)設橢圓方程為,半焦距為c,則

橢圓與圓O恰有兩個不同的公共點,則 ------------------------------6分

時,所求橢圓方程為;-------------8分

時,

所求橢圓方程為-------------------------------------------------------------10分

(3)設切點為N,則由題意得,在中,,則,

N點的坐標為,------------------- 11分

若橢圓為其焦點F1,F2

分別為點A,B故,-----------------------------------13分

若橢圓為,其焦點為,

此時    -------------------------------------------15分

 

 

 

 

 

 

 

 

 

 

19.

 

第Ⅱ卷(附加題)參考答案

21.(1)                                     ………………………………………………4分

   (2) 時對應的向量為時對應的向量為……10分

 

22.解:(1)由方程的(2)式平方減去(1)式得:  5分

(2)曲線的焦點到準線的距離為,離心率為,

所以曲線的極坐標方程為                     10分

23.解:(1)賦值法:分別令,,得 -----2分

(2),-------------------------------------------------6分

(3),的系數為:

所以,當時,展開式中的系數最小,為81.----10分

24.

 


同步練習冊答案