題目列表(包括答案和解析)
(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分。
已知是公差為的等差數(shù)列,是公比為的等比數(shù)列。
(1) 若,是否存在,有說明理由;
(2) 找出所有數(shù)列和,使對一切,,并說明理由;
(3) 若試確定所有的,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明。
(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分.
已知是公差為的等差數(shù)列,是公比為的等比數(shù)列.
(1) 若,是否存在,有說明理由;
(2) 找出所有數(shù)列和,使對一切,,并說明理由;
(3) 若試確定所有的,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明.
(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列的前項和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項公式,若不存在,說明理由.
(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列的前項和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項公式,若不存在,說明理由.
(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分。
已知是公差為的等差數(shù)列,是公比為的等比數(shù)列。
若,是否存在,有說明理由;
找出所有數(shù)列和,使對一切,,并說明理由;
若試確定所有的,使數(shù)列中存在某個連續(xù)項的和是數(shù)列中的一項,請證明。
一、填空題(每題5分,理科總分55分、文科總分60分):
1. ; 2. 理:2;文:; 3. 理:1.885;文:2;
4. 理:;文:1.885; 5. 理:;文:4; 6. 理:;文:;
7. 理:;文:; 8. 理:;文:6; 9. 理:;文:;
10. 理:1; 文:; 11. 理:;文:; 12. 文:;
二、選擇題(每題4分,總分16分):
題號
理12;文13
理13;文14
理:14;文:15
理15;文:16
答案
A
C
B
C
三、解答題:
16.(理,滿分12分)
解:因為拋物線的焦點的坐標(biāo)為,設(shè)、,
由條件,則直線的方程為,
代入拋物線方程,可得,則.
于是,.
…2
…4
…8
…12
17.(文,滿分12分)
解:因為,所以由條件可得,.
即數(shù)列是公比的等比數(shù)列.
又,
所以,.
…4
…6
…8
…12
(理)17.(文)18. (滿分14分)
解:因為
所以,
即或,
或,
又由,即
當(dāng)時,或;當(dāng)時,或.
所以,集合.
…3
…7
…11
…14
18.(理,滿分15分,第1小題6分,第2小題9分)
解:(1)當(dāng)時,
故,,所以.
(2)證:由數(shù)學(xué)歸納法
(i)當(dāng)時,易知,為奇數(shù);
(ii)假設(shè)當(dāng)時,,其中為奇數(shù);
則當(dāng)時,
所以,又、,所以是偶數(shù),
而由歸納假設(shè)知是奇數(shù),故也是奇數(shù).
綜上(i)、(ii)可知,的值一定是奇數(shù).
證法二:因為
當(dāng)為奇數(shù)時,
則當(dāng)時,是奇數(shù);當(dāng)時,
因為其中中必能被2整除,所以為偶數(shù),
于是,必為奇數(shù);
當(dāng)為偶數(shù)時,
其中均能被2整除,于是必為奇數(shù).
綜上可知,各項均為奇數(shù).
…3
…6
…8
…10
…14
…15
…10
…14
…15
19. (文,滿分14分)
解:如圖,設(shè)中點為,聯(lián)結(jié)、.
由題意,,,所以為等邊三角形,
故,且.
又,
所以.
而圓錐體的底面圓面積為,
所以圓錐體體積.
…3
…8
…10
…14
(理)19. (文)20. (滿分16分,第1小題4分,第2小題6分,第3小題6分)
解:(1)由題意,當(dāng)和之間的距離為
且此時中邊上的高為
又因為米,可得米.
所以,平方米,
即三角通風(fēng)窗的通風(fēng)面積為平方米.
(2)1如圖(1)所示,當(dāng)在矩形區(qū)域滑動,即時,
的面積;
2如圖(2)所示,當(dāng)在半圓形區(qū)域滑動,即時,
,故可得的面積
;
綜合可得:
(3)1當(dāng)在矩形區(qū)域滑動時,在區(qū)間上單調(diào)遞減,
則有;
2當(dāng)在半圓形區(qū)域滑動時,
,
等號成立,.
因而當(dāng)(米)時,每個三角通風(fēng)窗得到最大通風(fēng)面積,最大面積為(平方米).
…2
…4
…6
…9
…10
…12
…15
…16
21(文,滿分18分,第1小題5分,第2小題6分,第3小題7分)
解:(1)設(shè)右焦點坐標(biāo)為().
因為雙曲線C為等軸雙曲線,所以其漸近線必為,
由對稱性可知,右焦點到兩條漸近線距離相等,且.
于是可知,為等腰直角三角形,則由,
又由等軸雙曲線中,.
即,等軸雙曲線的方程為.
(2)設(shè)、為雙曲線直線的兩個交點.
因為,直線的方向向量為,直線的方程為
.
代入雙曲線的方程,可得,
于是有
而
.
(3)假設(shè)存在定點,使為常數(shù),其中,為直線與雙曲線的兩個交點的坐標(biāo).
①當(dāng)直線與軸不垂直時,設(shè)直線的方程為
代入,可得.
由題意可知,,則有 ,.
于是,
要使是與無關(guān)的常數(shù),當(dāng)且僅當(dāng),此時.
②當(dāng)直線與軸垂直時,可得點,,
若,亦為常數(shù).
綜上可知,在軸上存在定點,使為常數(shù).
…3
…5
…7
…9
…11
…13
…16
…17
…18
20(理,滿分22分,第1小題4分,第2小題6分,第3小題12分)
解:(1)解法一:由題意,四邊形是直角梯形,且∥,
則與所成的角即為.
因為,又平面,
所以平面,則有.
因為,,
所以,則,
即異面直線與所成角的大小為.
解法二:如圖,以為原點,直線為軸、直線為軸、直線為軸,
建立空間直角坐標(biāo)系.
于是有、,則有,又
則異面直線與所成角滿足,
所以,異面直線與
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com