(本題滿分18分)本題共有3個(gè)小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分。

已知是公差為的等差數(shù)列,是公比為的等比數(shù)列。

,是否存在,有說(shuō)明理由;

找出所有數(shù)列,使對(duì)一切,,并說(shuō)明理由;

試確定所有的,使數(shù)列中存在某個(gè)連續(xù)項(xiàng)的和是數(shù)列中的一項(xiàng),請(qǐng)證明。

解:(1)由,                      ……2分

整理后,可得,為整數(shù),

不存在,使等式成立。                       ……5分

(2)解法一:若,        (*)

(。┤

當(dāng)為非零常數(shù)列,為恒等于1的常數(shù)列,滿足要求。   ……7分

(ⅱ)若,(*)式等號(hào)左邊取極限得(*)式等號(hào)右邊的極限只有當(dāng)時(shí),才可能等于1,此時(shí)等號(hào)左邊是常數(shù),∴,矛盾。

綜上所述,只有當(dāng)為非零常數(shù)列,為恒等于1的常數(shù)列,滿足要求。

……10分

解法二:設(shè),若,對(duì)都成立,且為等比數(shù)列,

,對(duì)都成立,即,

,對(duì)都成立,

                                    ……7分

(。┤,。

(ⅱ)若,則(常數(shù)),即,則,矛盾

綜上所述,,使對(duì)一切       ……10分

(3),

設(shè)

,

,,            ……13分

,……15分

由二項(xiàng)展開(kāi)式可得正整數(shù),使得

存在整數(shù)滿足要求。

故當(dāng)且僅當(dāng),命題成立。                            ……18分

說(shuō)明:第(3)題若學(xué)生從以下角度解題,可分別得部分分(即分步得分)

為偶數(shù),則為偶數(shù),但為奇數(shù)。

故此等式不成立,一定為奇數(shù)。                         ……1分

當(dāng)時(shí),則,

當(dāng)為偶數(shù)時(shí),存在,使成立,                  ……1分

當(dāng)時(shí),則,

也即,

由已證可知,當(dāng)為偶數(shù)即為奇數(shù)時(shí),存在,成立,……2分

當(dāng)時(shí),則,

也即,而不是5的倍數(shù),當(dāng)所要求的不存在,

故不是所有奇數(shù)都成立。                                        ……2分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過(guò)點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img width=21 height=17 src="http://thumb.1010pic.com/pic1/1899/sx/18/333018.gif" >,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫(xiě)出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說(shuō)明:請(qǐng)寫(xiě)出你的分析過(guò)程.本小題將根據(jù)你對(duì)問(wèn)題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過(guò)點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.1010pic.com/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫(xiě)出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說(shuō)明:請(qǐng)寫(xiě)出你的分析過(guò)程.本小題將根據(jù)你對(duì)問(wèn)題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

(文)已知數(shù)列中,

(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和;

(3)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè)函數(shù)是定義域?yàn)?i>R的奇函數(shù).

(1)求k值;

(2)(文)當(dāng)時(shí),試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過(guò)點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052111495710937700/SYS201205211152429218217731_ST.files/image019.png">,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫(xiě)出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說(shuō)明:請(qǐng)寫(xiě)出你的分析過(guò)程.本小題將根據(jù)你對(duì)問(wèn)題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案