解法二:如圖過(guò)點(diǎn)S作直線∥AD 查看更多

 

題目列表(包括答案和解析)

(2010•盧灣區(qū)二模)數(shù)學(xué)課上,張老師出示了問(wèn)題1:如圖1,四邊形ABCD是正方形,BC=1,對(duì)角線交點(diǎn)記作O,點(diǎn)E是邊BC延長(zhǎng)線上一點(diǎn).連接OE交CD邊于F,設(shè)CE=x,CF=y,求y關(guān)于x的函數(shù)解析式及其定義域.
(1)經(jīng)過(guò)思考,小明認(rèn)為可以通過(guò)添加輔助線--過(guò)點(diǎn)O作OM⊥BC,垂足為M求解.你認(rèn)為這個(gè)想法可行嗎?請(qǐng)寫出問(wèn)題1的答案及相應(yīng)的推導(dǎo)過(guò)程;
(2)如果將問(wèn)題1中的條件“四邊形ABCD是正方形,BC=1”改為“四邊形ABCD是平行四邊形,BC=3,CD=2,”其余條件不變(如圖2),請(qǐng)直接寫出條件改變后的函數(shù)解析式;
(3)如果將問(wèn)題1中的條件“四邊形ABCD是正方形,BC=1”進(jìn)一步改為:“四邊形ABCD是梯形,AD∥BC,BC=a,CD=b,AD=c(其中a,b,c為常量)”其余條件不變(如圖3),請(qǐng)你寫出條件再次改變后y關(guān)于x的函數(shù)解析式以及相應(yīng)的推導(dǎo)過(guò)程.

查看答案和解析>>

解:(1)點(diǎn)C的坐標(biāo)為.

∵ 點(diǎn)A、B的坐標(biāo)分別為,

            ∴ 可設(shè)過(guò)AB、C三點(diǎn)的拋物線的解析式為.   

            將代入拋物線的解析式,得.

            ∴ 過(guò)A、B、C三點(diǎn)的拋物線的解析式為.

(2)可得拋物線的對(duì)稱軸為,頂點(diǎn)D的坐標(biāo)為   

,設(shè)拋物線的對(duì)稱軸與x軸的交點(diǎn)為G.

直線BC的解析式為.

設(shè)點(diǎn)P的坐標(biāo)為.

解法一:如圖8,作OPAD交直線BC于點(diǎn)P,

連結(jié)AP,作PMx軸于點(diǎn)M.

OPAD,

∴ ∠POM=∠GAD,tan∠POM=tan∠GAD.

  ∴ ,即.

  解得.  經(jīng)檢驗(yàn)是原方程的解.

  此時(shí)點(diǎn)P的坐標(biāo)為.

但此時(shí),OMGA.

  ∵

      ∴ OPAD,即四邊形的對(duì)邊OPAD平行但不相等,

      ∴ 直線BC上不存在符合條件的點(diǎn)P. - - - - - - - - - - - - - - - - - - - - - 6分

            解法二:如圖9,取OA的中點(diǎn)E,作點(diǎn)D關(guān)于點(diǎn)E的對(duì)稱點(diǎn)P,作PNx軸于

點(diǎn)N. 則∠PEO=∠DEA,PE=DE.

可得△PEN≌△DEG

,可得E點(diǎn)的坐標(biāo)為.

NE=EG=, ON=OE-NE=,NP=DG=.

∴ 點(diǎn)P的坐標(biāo)為.∵ x=時(shí),,

∴ 點(diǎn)P不在直線BC上.

                   ∴ 直線BC上不存在符合條件的點(diǎn)P .

 


(3)的取值范圍是.

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時(shí),對(duì)課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索.

【作業(yè)題】如圖1,一個(gè)半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測(cè)得圓周角∠C=45°,求橋AB的長(zhǎng).

小明和小聰經(jīng)過(guò)交流,得到了如下的兩種解決方法:

方法一:延長(zhǎng)BO交⊙O與點(diǎn)E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=

感悟:圓內(nèi)接三角形的一邊和這邊的對(duì)銳角、圓的半徑(或直徑)這三者關(guān)系,可構(gòu)成直角三角形,從而把一邊和這邊的對(duì)銳角﹑半徑建立一個(gè)關(guān)系式.

(1)問(wèn)題解決:受到(1)的啟發(fā),請(qǐng)你解下面命題:如圖2,點(diǎn)A(3,0)、B(0,),C為直線AB上一點(diǎn),過(guò)A、O、C的⊙E的半徑為2.求線段OC的長(zhǎng).

(2)問(wèn)題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.①y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長(zhǎng)度的最小值.

 

 

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時(shí),對(duì)課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索.
【作業(yè)題】如圖1,一個(gè)半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測(cè)得圓周角∠C=45°,求橋AB的長(zhǎng).

小明和小聰經(jīng)過(guò)交流,得到了如下的兩種解決方法:
方法一:延長(zhǎng)BO交⊙O與點(diǎn)E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=
方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=
感悟:圓內(nèi)接三角形的一邊和這邊的對(duì)銳角、圓的半徑(或直徑)這三者關(guān)系,可構(gòu)成直角三角形,從而把一邊和這邊的對(duì)銳角﹑半徑建立一個(gè)關(guān)系式.
(1)問(wèn)題解決:受到(1)的啟發(fā),請(qǐng)你解下面命題:如圖2,點(diǎn)A(3,0)、B(0,),C為直線AB上一點(diǎn),過(guò)A、O、C的⊙E的半徑為2.求線段OC的長(zhǎng).

(2)問(wèn)題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.①y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長(zhǎng)度的最小值.

查看答案和解析>>

小明和同桌小聰在課后做作業(yè)時(shí),對(duì)課本中的一道作業(yè)題,進(jìn)行了認(rèn)真探索。

【作業(yè)題】如圖1,一個(gè)半徑為100m的圓形人工湖如圖所示,弦AB是湖上的一座橋,測(cè)得圓周角∠C=45°,求橋AB的長(zhǎng)。

小明和小聰經(jīng)過(guò)交流,得到了如下的兩種解決方法:

方法一:延長(zhǎng)BO交⊙O與點(diǎn)E,連接AE,得 Rt△ABE,∠E=∠C,∴AB=100;

方法二:作AB的弦心距OH,連接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50,

∴AB=100。

感悟:圓內(nèi)接三角形的一邊和這邊的對(duì)銳角、圓的半徑(或直徑)這三者關(guān)系,

可構(gòu)成直角三角形,從而把一邊和這邊的對(duì)銳角﹑半徑建立一個(gè)關(guān)系式。

(1)問(wèn)題解決:受到(1)的啟發(fā),請(qǐng)你解下面命題:如圖2,點(diǎn)A(3,0)、B(0,),C為直線AB上一點(diǎn),過(guò)A、O、C的⊙E的半徑為2. 求線段OC的長(zhǎng)。

(2)問(wèn)題拓展:如圖3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2,D是線段BC上的一個(gè)動(dòng)點(diǎn),以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連結(jié)EF, 設(shè)⊙O半徑為x, EF為y.

①     y關(guān)于x的函數(shù)關(guān)系式;②求線段EF長(zhǎng)度的最小值。

查看答案和解析>>


同步練習(xí)冊(cè)答案