(2010•盧灣區(qū)二模)數(shù)學(xué)課上,張老師出示了問(wèn)題1:如圖1,四邊形ABCD是正方形,BC=1,對(duì)角線交點(diǎn)記作O,點(diǎn)E是邊BC延長(zhǎng)線上一點(diǎn).連接OE交CD邊于F,設(shè)CE=x,CF=y,求y關(guān)于x的函數(shù)解析式及其定義域.
(1)經(jīng)過(guò)思考,小明認(rèn)為可以通過(guò)添加輔助線--過(guò)點(diǎn)O作OM⊥BC,垂足為M求解.你認(rèn)為這個(gè)想法可行嗎?請(qǐng)寫出問(wèn)題1的答案及相應(yīng)的推導(dǎo)過(guò)程;
(2)如果將問(wèn)題1中的條件“四邊形ABCD是正方形,BC=1”改為“四邊形ABCD是平行四邊形,BC=3,CD=2,”其余條件不變(如圖2),請(qǐng)直接寫出條件改變后的函數(shù)解析式;
(3)如果將問(wèn)題1中的條件“四邊形ABCD是正方形,BC=1”進(jìn)一步改為:“四邊形ABCD是梯形,AD∥BC,BC=a,CD=b,AD=c(其中a,b,c為常量)”其余條件不變(如圖3),請(qǐng)你寫出條件再次改變后y關(guān)于x的函數(shù)解析式以及相應(yīng)的推導(dǎo)過(guò)程.

【答案】分析:(1)由四邊形ABCD是正方形,可得OB=OD,又由OM⊥BC,易證得OM∥DC,由平行線分線段成比例定理即可求得y關(guān)于x的函數(shù)解析式;
(2)作OM∥CD交BC于點(diǎn)M,利用(1)中的方法,即可求得y關(guān)于x的函數(shù)解析式;
(3)首先作ON∥CD交BC于點(diǎn)N,由平行線分線段成比例定理即可求得y關(guān)于x的函數(shù)解析式.
解答:解:(1)如圖:
∵四邊形ABCD是正方形,
∴OB=OD.
∵OM⊥BC,
∴∠OMB=∠DCB=90°,
∴OM∥DC.
∴OM=DC=,CM=BC=
∵OM∥DC,
,

解得.定義域?yàn)閤>0.

(2)(x>0).

(3)如右圖:
AD∥BC,
過(guò)點(diǎn)O作ON∥CD,交BC于點(diǎn)N,
,

∵ON∥CD,,


∵ON∥CD,
,即
∴y關(guān)于x的函數(shù)解析式為(x>0).
點(diǎn)評(píng):此題考查了平行線分線段成比例定理.此題的圖形變化比較多,難度較大,解題的關(guān)鍵是注意識(shí)圖,準(zhǔn)確應(yīng)用數(shù)形結(jié)合思想解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市盧灣區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•盧灣區(qū)二模)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(1,3),B(0,1).
(1)求拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn)A作x軸的平行線交拋物線于另一點(diǎn)C,
①求△ABC的面積;
②在y軸上取一點(diǎn)P,使△ABP與△ABC相似,求滿足條件的所有P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市盧灣區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)二模)如果將拋物線y=-3x2沿y軸向上平移2個(gè)單位后,得到新的拋物線,那么新拋物線的表達(dá)式為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市盧灣區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)二模)若一次函數(shù)的圖象如圖所示,則此一次函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年上海市盧灣區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•盧灣區(qū)二模)如圖,已知OC是⊙O的半徑,弦AB=6,AB⊥OC,垂足為M,且CM=2.
(1)連接AC,求∠CAM的正弦值;
(2)求OC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案