題目列表(包括答案和解析)
(本小題滿分12分)
已知函數,且。
(I)試用含的代數式表示;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)令,設函數在處取得極值,記點,證明:線段與曲線存在異于、的公共點。
(本小題滿分12分)
已知點,過點作拋物線的切線,切點在第二象限,如圖.
(Ⅰ)求切點的縱坐標;
(Ⅱ)若離心率為的橢圓 恰好經過切點,設切線交橢圓的另一點為,記切線的斜率分別為,若,求橢圓方程.
21(本小題滿分12分)
已知函數 .
(1)討論函數的單調性;
(2)當時,恒成立,求實數的取值范圍;
(3)證明:.
22.選修4-1:幾何證明選講
如圖,是圓的直徑,是弦,的平分線交圓于點,,交的延長線于點,交于點。
(1)求證:是圓的切線;
(2)若,求的值。
23.選修4—4:坐標系與參數方程
在平面直角坐標系中,直線過點且傾斜角為,以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點;
(1)若,求直線的傾斜角的取值范圍;
(2)求弦最短時直線的參數方程。
24. 選修4-5 不等式選講
已知函數
(I)試求的值域;
(II)設,若對,恒有成立,試求實數a的取值范圍。
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圓;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設抽取件產品作檢驗,則,
,得:,即
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得,,原式可化為,
而
,
故原式=.
17. 解:(1)顯然,連接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
當且僅當時,等號成立.此時,即為的中點.于是由,知平面,是其交線,則過作
。
∴就是與平面所成的角.由已知得,,
∴, , .
(3) 設三棱錐的內切球半徑為,則
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當時,
∴當時,,
∵,,,.
∴ 的最大值為或中的最大者.
∵
∴ 當時,有最大值為.
19.(1)解:∵函數的圖象過原點,
∴即,
∴.
又函數的圖象關于點成中心對稱,
∴, .
(2)解:由題意有 即,
即,即.
∴數列{}是以1為首項,1為公差的等差數列.
∴,即. ∴.
∴ ,,,.
(3)證明:當時,
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)證明:用數學歸納法證明:
①當時,,猜想正確;
②假設時,猜想正確,即
1°若為正奇數,則為正偶數,為正整數,
2°若為正偶數,則為正整數,
,又,且
所以
即當時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|