證明不等式: [必做題]第22題.第23題.每題10分.共計20分. 請?jiān)诖痤}紙指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明.證明過程或演算步驟. 查看更多

 

題目列表(包括答案和解析)

已知,函數(shù)(其中為自然對數(shù)的底數(shù)).

  (Ⅰ)求函數(shù)在區(qū)間上的最小值;

  (Ⅱ)設(shè)數(shù)列的通項(xiàng),是前項(xiàng)和,證明:

【解析】本試題主要考查導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,求解函數(shù)給定區(qū)間的最值問題,以及能結(jié)合數(shù)列的相關(guān)知識,表示數(shù)列的前n項(xiàng)和,同時能構(gòu)造函數(shù)證明不等式的數(shù)學(xué)思想。是一道很有挑戰(zhàn)性的試題。

 

查看答案和解析>>

把函數(shù)的圖象按向量平移得到函數(shù)的圖象. 

(1)求函數(shù)的解析式; (2)若,證明:.

【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。

(1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 證明:令,……6分

……8分

,∴,∴上單調(diào)遞增.……10分

,即

 

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實(shí)數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

,得

當(dāng)x變化時,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

,得

①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

當(dāng)時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

由下列不等式:,,, ,你能得到一個怎樣的一般不等式?并加以證明。

【解析】本試題主要考查了合情推理的數(shù)學(xué)思想,關(guān)鍵是觀察到表達(dá)式的特點(diǎn),以及運(yùn)用數(shù)學(xué)歸納法證明不等式的重要的數(shù)學(xué)思想。

 

查看答案和解析>>

集合A1,A2,A3,…,An為集合M={1,2,3,…,n}的n個不同的子集,對于任意不大于n的正整數(shù)i,j滿足下列條件:
①i∉Ai,且每一個Ai至少含有三個元素;
②i∈Aj的充要條件是j∉Aj(其中i≠j).
為了表示這些子集,作n行n列的數(shù)表(即n×n數(shù)表),規(guī)定第i行第j列數(shù)為:aij=
0   當(dāng)i∉AJ
1        當(dāng)i∈AJ時  

(1)該表中每一列至少有多少個1;若集合M={1,2,3,4,5,6,7},請完成下面7×7數(shù)表(填符合題意的一種即可);
(2)用含n的代數(shù)式表示n×n數(shù)表中1的個數(shù)f(n),并證明n≥7;
(3)設(shè)數(shù)列{an}前n項(xiàng)和為f(n),數(shù)列{cn}的通項(xiàng)公式為:cn=5an+1,證明不等式:
5cmn
-
cmcn
>1對任何正整數(shù)m,n都成立.(第1小題用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

 

第 一 部 分

 

一、填空題:

1.        2.          3.1            4.16

5.                                 6.               7.64           8.

9.25                                 10.①④            11.        12.

13.                          14.

二、解答題:

15.解:(Ⅰ)依題意:,

,解之得,(舍去)   …………………7分

(Ⅱ),∴  ,,  ………………………9分

∴    …………………………………11分

.      ……………………………………………14分

16.解:(Ⅰ)因?yàn)橹饕晥D和左視圖均為矩形、所以該三棱柱為直三棱柱.

連BC1交B1C于O,則O為BC1的中點(diǎn),連DO。

則在中,DO是中位線,

∴DO∥AC1.                ………………………………………………………4分

∵DO平面DCB1,AC1平面DCB1

∴AC1∥平面CDB1.           ………………………………………………………7分

(Ⅱ)由已知可知是直角三角形,

∵ 

∴  平面,平面

∴   。

∵  

∴  平面,

平面

∴  。

17.解:(Ⅰ)由題意知:

一般地: ,…4分

∴  )。……………………………………7分

(Ⅱ)2008年諾貝爾獎發(fā)獎后基金總額為:

 ,…………………………………………10分

2009年度諾貝爾獎各項(xiàng)獎金額為萬美元, ………12分

與150萬美元相比少了約14萬美元。     …………………………………………14分

答:新聞 “2009年度諾貝爾獎各項(xiàng)獎金高達(dá)150萬美元”不真,是假新聞!15分

18.解:(Ⅰ)圓軸交點(diǎn)坐標(biāo)為,

,,故,    …………………………………………2分

所以

橢圓方程是:               …………………………………………5分

(Ⅱ)設(shè)直線軸的交點(diǎn)是,依題意,

,

,

,

,

 

(Ⅲ)直線的方程是,…………………………………………………6分

圓D的圓心是,半徑是,……………………………………………8分

設(shè)MN與PD相交于,則是MN的中點(diǎn),且PM⊥MD,

……10分

當(dāng)且僅當(dāng)最小時,有最小值,

最小值即是點(diǎn)到直線的距離是,…………………12分

所以的最小值是。  ……………………………15分

 

19.解:(Ⅰ)點(diǎn)的坐標(biāo)依次為,…,

,…,           ……………………………2分

,…,

共線;則,

, ……………………………4分

,

所以數(shù)列是等比數(shù)列。          ……………………………………………6分

(Ⅱ)依題意,

,

兩式作差,則有:,   ………………………8分

,故,   ……………………………………………10分

即數(shù)列是公差為的等差數(shù)列;此數(shù)列的前三項(xiàng)依次為

,

,可得,

,或,或。           ………………………………………12分

數(shù)列的通項(xiàng)公式是,或,或。    ………14分

知,時,不合題意;

時,不合題意;

時,;

所以,數(shù)列的通項(xiàng)公式是。  ……………………………………16分

 

20.解:(Ⅰ)函數(shù)定義域,

,    ……………………………………………4分

(Ⅱ),由(Ⅰ)

,單調(diào)遞增,

所以

設(shè),

,也就是。

所以,存在值使得對一個,方程都有唯一解!10分

(Ⅲ)

,

以下證明,對的數(shù)及數(shù),不等式不成立。

反之,由,亦即成立,

因?yàn)?sub>,,

,這是不可能的。這說明是滿足條件的最小正數(shù)。

這樣不等式恒成立,

恒成立,

∴  ,最小正數(shù)=4 。……………………16分

 

 第二部分(加試部分)

21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

△ADE∽△ACO,                ……………………………………………8分

CD=3                         ……………………………………………10分

(B)解:(Ⅰ),

所以點(diǎn)作用下的點(diǎn)的坐標(biāo)是。…………………………5分

(Ⅱ)

設(shè)是變換后圖像上任一點(diǎn),與之對應(yīng)的變換前的點(diǎn)是

,

也就是,即,

所以,所求曲線的方程是。……………………………………………10分

(C)解:由已知圓的半徑為,………4分

又圓的圓心坐標(biāo)為,所以圓過極點(diǎn),

所以,圓的極坐標(biāo)方程是!10分

(D)證明:

            ……………………………………6分

=2-

<2                              ……………………………………10分

 

 

 

22.解:(Ⅰ)∵,∴

∴切線l的方程為,即.……………………………………………4分

(Ⅱ)令=0,則.令=0,則x=1.

 ∴A=.………………10分

23.解:(Ⅰ)記“該生在前兩次測試中至少有一次通過”的事件為事件A,則

P(A)=

答:該生在前兩次測試中至少有一次通過的概率為。 …………………………4分

(Ⅱ)參加測試次數(shù)的可能取值為2,3,4,

      ,

    ,

      ,    ……………………………………………7分

        故的分布列為:

2

3

4

     ……………………………………………10分

 

 

 


同步練習(xí)冊答案