又(點在之間.則) 查看更多

 

題目列表(包括答案和解析)

(2011•武進區(qū)模擬)函數(shù)f(x)=
1
2
ax2-bx-lnx
,a>0,f'(1)=0.
(1)①試用含有a的式子表示b;②求f(x)的單調(diào)區(qū)間;
(2)對于函數(shù)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點P(x0,y0)(其中x0在x1與x2之間),使得點P處的切線l∥AB,則稱AB存在“伴隨切線”,當x0=
x1+x2
2
時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點A、B,使得AB存在“中值伴隨切線”?若存在,求出A、B的坐標;若不存在,說明理由.

查看答案和解析>>

(本小題共14分)函數(shù),.

(1)①試用含有的式子表示;②求的單調(diào)區(qū)間;

(2)對于函數(shù)圖像上的不同兩點,如果在函數(shù)圖像上存在點(其中之間),使得點處的切線,則稱存在“伴隨切線”,當時,又稱存在“中值伴隨切線”。試問:在函數(shù)的圖像上是否存在兩點、,使得存在“中值伴隨切線”?若存在,求出、的坐標;若不存在,說明理由。

 

查看答案和解析>>

(本小題共14分)函數(shù),.
(1)①試用含有的式子表示;②求的單調(diào)區(qū)間;
(2)對于函數(shù)圖像上的不同兩點,如果在函數(shù)圖像上存在點(其中之間),使得點處的切線,則稱存在“伴隨切線”,當時,又稱存在“中值伴隨切線”。試問:在函數(shù)的圖像上是否存在兩點、,使得存在“中值伴隨切線”?若存在,求出、的坐標;若不存在,說明理由。

查看答案和解析>>

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調(diào)遞增!最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

函數(shù)數(shù)學公式,a>0,f'(1)=0.
(1)①試用含有a的式子表示b;②求f(x)的單調(diào)區(qū)間;
(2)對于函數(shù)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點P(x0,y0)(其中x0在x1與x2之間),使得點P處的切線l∥AB,則稱AB存在“伴隨切線”,當數(shù)學公式時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點A、B,使得AB存在“中值伴隨切線”?若存在,求出A、B的坐標;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案