所以 說明 此題為1996年全國高考文史類數(shù)學試題第(21)題.不少考生的解法同錯誤解法.根據(jù)評分標準而痛失2分.④避免直觀代替論證我們知道直觀圖形常常為我們解題帶來方便.但是.如果完全以圖形的直觀聯(lián)系為依據(jù)來進行推理.這就會使思維出現(xiàn)不嚴密現(xiàn)象. 查看更多

 

題目列表(包括答案和解析)

有一道競賽題,甲解出它的概率為,乙解出它的概率為,丙解出它的概率為,則甲、乙、丙三人獨立解答此題,只有1人解出的概率是(    )

A.              B.                 C.               D.1

查看答案和解析>>

有一道競賽試題,A解出它的概率為,B解出它的概率為,C解出它的概率為,則A,B,C三人獨立解答此題,只有1人解出的概率為(    )

A.                B.                 C.               D.1

查看答案和解析>>

根據(jù)下面的程序,畫出其相應(yīng)的程序框圖,并說明此題所表述算法的功能。

 

 

查看答案和解析>>

設(shè)點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、的坐標,從而使得

(2)當時,若,

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設(shè),

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

設(shè)分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,不妨取;;;

解:(1)拋物線的焦點為,設(shè),

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

設(shè)分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

,

.

,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設(shè),分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設(shè)

分別過作拋物線準線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:

“當時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

(2008•普陀區(qū)二模)已知點E,F(xiàn)的坐標分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點P,且它們的斜率之積為-
1
4

(1)求證:點P的軌跡在橢圓C:
x2
4
+y2=1
上;
(2)設(shè)過原點O的直線AB交(1)題中的橢圓C于點A、B,定點M的坐標為(1,
1
2
)
,試求△MAB面積的最大值,并求此時直線AB的斜率kAB
(3)某同學由(2)題結(jié)論為特例作推廣,得到如下猜想:
設(shè)點M(a,b)(ab≠0)為橢圓C:
x2
4
+y2=1
內(nèi)一點,過橢圓C中心的直線AB與橢圓分別交于A、B兩點.則當且僅當kOM=-kAB時,△MAB的面積取得最大值.
問:此猜想是否正確?若正確,試證明之;若不正確,請說明理由.

查看答案和解析>>


同步練習冊答案