思維阻礙 由于這是一個關(guān)于自然數(shù)的命題.一些學(xué)生都會想到用數(shù)學(xué)歸納法來證明.難以進行數(shù)與形的聯(lián)想.原因是平時不注意代數(shù)與幾何之間的聯(lián)系.單純學(xué)代數(shù).學(xué)幾何.因而不能將題目條件的數(shù)字或式子特征與直觀圖形聯(lián)想起來.(3) 問題轉(zhuǎn)化的訓(xùn)練我們所遇見的數(shù)學(xué)題大都是生疏的.復(fù)雜的.在解題時.不僅要先觀察具體特征.聯(lián)想有關(guān)知識.而且要將其轉(zhuǎn)化成我們比較熟悉的.簡單的問題來解.恰當?shù)霓D(zhuǎn)化.往往使問題很快得到解決.所以.進行問題轉(zhuǎn)化的訓(xùn)練是很必要的.1 轉(zhuǎn)化成容易解決的明顯題目 查看更多

 

題目列表(包括答案和解析)

(2008•普陀區(qū)二模)經(jīng)濟學(xué)中有一個用來權(quán)衡企業(yè)生產(chǎn)能力(簡稱“產(chǎn)能”)的模型,稱為“產(chǎn)能邊界”.它表示一個企業(yè)在產(chǎn)能最大化的條件下,在一定時期內(nèi)所能生產(chǎn)的幾種產(chǎn)品產(chǎn)量的各種可能的組合.例如,某企業(yè)在產(chǎn)能最大化條件下,一定時期內(nèi)能生產(chǎn)A產(chǎn)品x臺和B產(chǎn)品y臺,則它們之間形成的函數(shù)y=f(x)就是該企業(yè)的“產(chǎn)能邊界函數(shù)”.現(xiàn)假設(shè)該企業(yè)的“產(chǎn)能邊界函數(shù)”為y=15
1600-2x
(如圖).
(1)試分析該企業(yè)的產(chǎn)能邊界,分別選用①、②、③中的一個序號填寫下表:
點Pi(x,y)對應(yīng)的產(chǎn)量組合 實際意義
P1(350,450)
P2(200,300)
P3(500,400)
P4(408,420)
①這是一種產(chǎn)能未能充分利用的產(chǎn)量組合;
②這是一種生產(chǎn)目標脫離產(chǎn)能實際的產(chǎn)量組合;
③這是一種使產(chǎn)能最大化的產(chǎn)量組合.
(2)假設(shè)A產(chǎn)品每臺利潤為a(a>0)元,B產(chǎn)品每臺利潤為A產(chǎn)品每臺利潤的2倍.在該企業(yè)的產(chǎn)能邊界條件下,試為該企業(yè)決策,應(yīng)生產(chǎn)A產(chǎn)品和B產(chǎn)品各多少臺才能使企業(yè)從中獲得最大利潤?

查看答案和解析>>

下列語句:
①平行四邊形不是梯形;
3
是無理數(shù);
③方程9x2-1=0的解是x=±
1
3

④這是一棵大樹;
⑤2012年7月27日是倫敦奧運會開幕的日子.
其中命題的個數(shù)是
4
4

查看答案和解析>>

下列語句中命題的個數(shù)是( 。
①地球是太陽系的一顆行星; 
②{0}∈N;
③這是一顆大樹;
④|x+a|;
⑤1+1>2;
 ⑥老年人組成一個集合.

查看答案和解析>>

我們知道,對一個量用兩種方法分別算一次,由結(jié)果相同可以構(gòu)造等式,這是一種非常有用的思想方法--“算兩次”(G.Fubini原理),如小學(xué)有列方程解應(yīng)用題,中學(xué)有等積法求高…
請結(jié)合二項式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
證明:
(1)
n
r=0
(
C
r
n
)2=
C
n
2n
;  
(2)
m
r=0
(
C
r
n
C
m-r
n
)=
C
m
2n

查看答案和解析>>

關(guān)于簡單隨機抽樣的特點,有以下幾種說法,其中不正確的是(  )

查看答案和解析>>


同步練習(xí)冊答案