[解析](1)設(shè)86年底人口總數(shù)為a.住宅總面積10a.年人口增長的公比為(即后一年是前一年人口的倍).年住宅總面積的公差為.則2006年底人均住房面積為.則.故1996年底人均住房面積. 查看更多

 

題目列表(包括答案和解析)

已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)記,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時,,故等式成立.

②  假設(shè)當(dāng)n=k時等式成立,即,則當(dāng)n=k+1時,有:

   

   

,因此n=k+1時等式也成立

由①和②,可知對任意成立.

 

查看答案和解析>>

改革開放以來,我國高等教育事業(yè)有了突飛猛進(jìn)的發(fā)展,有人記錄了某村年十年間每年考入大學(xué)的人數(shù).為方便計算,年編號為,年編號為,…,年編號為.?dāng)?shù)據(jù)如下:

年份(

10

人數(shù)(

11

13

14

17

22

30

31

(1)從這年中隨機(jī)抽取兩年,求考入大學(xué)的人數(shù)至少有年多于人的概率;

(2)根據(jù)前年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計算第年的估計值和實際值之間的差的絕對值。

 

【解析】(1)設(shè)考入大學(xué)人數(shù)至少有1年多于15人的事件為A則P(A)=1-=      (4’)

(2)由已知數(shù)據(jù)得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 則回歸直線方程為y=2.6x+0.2                           (10’)

則第8年的估計值和真實值之間的差的絕對值為

 

查看答案和解析>>

已知

(1)求的單調(diào)區(qū)間;

(2)證明:當(dāng)時,恒成立;

(3)任取兩個不相等的正數(shù),且,若存在使成立,證明:

【解析】(1)g(x)=lnx+,=        (1’)

當(dāng)k0時,>0,所以函數(shù)g(x)的增區(qū)間為(0,+),無減區(qū)間;

當(dāng)k>0時,>0,得x>k;<0,得0<x<k∴增區(qū)間(k,+)減區(qū)間為(0,k)(3’)

(2)設(shè)h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 當(dāng)x變化時,h(x),的變化情況如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

設(shè)G(x)=lnx-(x1) ==0,當(dāng)且僅當(dāng)x=1時,=0所以G(x) 為減函數(shù), 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,綜上,當(dāng)x1時, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴l(xiāng)nx0+1==∴l(xiāng)nx0=-1      ∴l(xiāng)nx0 –lnx=-1–lnx===(10’)  設(shè)H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t) <H(1)=0∵=

∴l(xiāng)nx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點.

然后設(shè)點,的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點,的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,

,即只要  ………………12分  

當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

設(shè)函數(shù),其中常數(shù)

(1)討論的單調(diào)性

(2)若當(dāng)時,恒成立,求的取值范圍

【解析】(1)求導(dǎo)、分解,討論導(dǎo)函數(shù)的零點,(2)只要最小值大于0,求a的范圍。

 

查看答案和解析>>


同步練習(xí)冊答案