題目列表(包括答案和解析)
7、9、10班同學(xué)做乙題,其他班同學(xué)任選一題,若兩題都做,則以較少得分計入總分.
(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.
(1)若a=-1,求f(x)的極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù)a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
(乙)定義在(0,+∞)上的函數(shù),其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.
(1)若函數(shù)f(x)在點x=1處連續(xù),求a的值;
(2)若函數(shù)f(x)為(0,1)上的單調(diào)函數(shù),求實數(shù)a的取值范圍;并判斷此時函數(shù)f(x)在(0,+∞)上是否為單調(diào)函數(shù);
(3)當(dāng)x∈(0,1)時,記g(x)=lnf(x)+x2-ax. 試證明:對,當(dāng)n≥2時,有
已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1, 關(guān)于x的方程:
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)
f(x2)-f(x1) |
x2-x1 |
f(b)-f(a) |
b-a |
b-a |
b |
b |
a |
b-a |
a |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com