已知雙曲線M:雙曲線的左右焦點(diǎn)分別為F1.F2.P為雙曲線上一點(diǎn).且的最小值的取值集合是[-3a2,-a2].則雙曲線M的離心率的取值范圍是 [,2] (C) [,4) (D) (1, ] 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2作雙曲線C的一條漸近線的垂線,垂足為H,若F2H的中點(diǎn)M在雙曲線C上,則雙曲線C的離心率為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點(diǎn).
(1)求證:直線l與雙曲線C只有一個公共點(diǎn);
(2)設(shè)直線l與雙曲線C的公共點(diǎn)為M,且
AM
AB
,證明:λ+e2=1;
(3)設(shè)P是點(diǎn)F1關(guān)于直線l的對稱點(diǎn),當(dāng)△PF1F2為等腰三角形時,求e的值.

查看答案和解析>>

已知雙曲線C:
x2
2
-
y2
b2
=1(b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,P,M為C上任意點(diǎn),F1PF2=
π
2
S△PF1F2=1,N(
3
2
,1)
,則
6
3
|MF2|+|MN|
的最小值為
 

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為
2
3
3
,左、右焦點(diǎn)分別為F1、F2,在雙曲線C上有一點(diǎn)M,使MF1⊥MF2,且△MF1F2的面積為.
(1)求雙曲線C的方程;
(2)過點(diǎn)P(3,1)的動直線 l與雙曲線C的左、右兩支分別交于兩點(diǎn)A、B,在線段AB上取異于A、B的點(diǎn)Q,滿足|AP|•|QB|=|AQ|•|PB|,證明:點(diǎn)Q總在某定直線上.

查看答案和解析>>

已知雙曲線的中心在原點(diǎn),左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為
2
,且過點(diǎn)(4,-
10
)
,
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線系kx-y-3k+m=0(其中k為參數(shù))所過的定點(diǎn)M恰在雙曲線上,求證:F1M⊥F2M.

查看答案和解析>>


同步練習(xí)冊答案