題目列表(包括答案和解析)
數(shù)列首項(xiàng),前項(xiàng)和滿足等式(常數(shù),……)
(1)求證:為等比數(shù)列;
(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項(xiàng)公式.
(3)設(shè),求數(shù)列的前項(xiàng)和.
【解析】第一問(wèn)利用由得
兩式相減得
故時(shí),
從而又 即,而
從而 故
第二問(wèn)中, 又故為等比數(shù)列,通項(xiàng)公式為
第三問(wèn)中,
兩邊同乘以
利用錯(cuò)位相減法得到和。
(1)由得
兩式相減得
故時(shí),
從而 ………………3分
又 即,而
從而 故
對(duì)任意,為常數(shù),即為等比數(shù)列………………5分
(2) ……………………7分
又故為等比數(shù)列,通項(xiàng)公式為………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問(wèn)中∵,∴,…………………1分
∵,得到三角關(guān)系是,結(jié)合,解得。
(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值
于是對(duì)一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知數(shù)列的前項(xiàng)和為,且 (N*),其中.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時(shí),由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對(duì)偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;
②假設(shè)時(shí),命題成立,即,
則當(dāng)時(shí),
即
即
故當(dāng)時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
這個(gè)算法又叫“韓信點(diǎn)兵”.相傳韓信才略過(guò)人,領(lǐng)兵打仗時(shí),為了對(duì)敵方保密,從不點(diǎn)自己軍隊(duì)的人數(shù),只是讓他的士兵以三人一排很快地從他面前過(guò)去,再以五人一排走一次,最后以七人一排走過(guò)去,由于隊(duì)伍走得很快,別人根本來(lái)不及數(shù)有多少人.然而韓信只對(duì)各隊(duì)士兵的最后一排掠一眼,就知道總數(shù)了,他利用的就是上面的這個(gè)口訣,你能理解這個(gè)口訣嗎?
求解“孫子問(wèn)題”的算法有很多,你能想出什么樣的算法?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com