一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表: 轎車A 轎車B 轎車C 舒適型 100 150 z 標準型 300 450 600 按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛. (1)求z的值. (2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本.將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率; (3)用隨機抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率. 解 (1)設(shè)該廠本月生產(chǎn)轎車為n輛,由題意得,,所以n=2000. z=2000-100-300-150-450-600=400 (2)設(shè)所抽樣本中有m輛舒適型轎車,因為用分層抽樣的方法在C類轎車中抽取一個容量 為5的樣本,所以,解得m=2也就是抽取了2輛舒適型轎車,3輛標準型轎車,分 別記作S1,S2;B1,B2,B3,則從中任取2輛的所有基本事件為(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10個,其中至少有1輛舒適型轎車的基本 事件有7個基本事件: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以從中任取 2輛,至少有1輛舒適型轎車的概率為. (3)樣本的平均數(shù)為, 那么與樣本平均數(shù)之差的絕對值不超過0.5的數(shù)為9.4, 8.6, 9.2, 8.7, 9.3, 9.0這6個數(shù),總的個數(shù)為8,所以該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率為. [命題立意]本題為概率與統(tǒng)計的知識內(nèi)容,涉及到分層抽樣以及古典概型求事件的概率 問題.要讀懂題意,分清類型,列出基本事件,查清個數(shù).,利用公式解答. 查看更多

 

題目列表(包括答案和解析)

(2009山東卷文) (本小題滿分14分)

設(shè),在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.

(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;      

(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;

(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

 (2009山東卷文)在區(qū)間上隨機取一個數(shù)x,的值介于0到之間的概率為(       ).

A.      B.      C.      D.      

查看答案和解析>>

(2009山東卷文)已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“”是“”的(          )

A.充分不必要條件        B.必要不充分條件

C.充要條件              D.既不充分也不必要條件    

查看答案和解析>>

(2009山東卷文)已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“”是“”的(          )

A.充分不必要條件        B.必要不充分條件

C.充要條件              D.既不充分也不必要條件    

查看答案和解析>>

(2009山東卷文)(本小題滿分14分)

設(shè),在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.

(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;   

(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;

(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.

查看答案和解析>>


同步練習冊答案