題目列表(包括答案和解析)
已知復(fù)數(shù)z1=sin2x+λi,z2=m+(m-cos2x)i(λ,m,x∈R),且z1=z2.
(1)若λ=0且0<x<π,求x的值.
(2)設(shè)λ=f(x),已知當(dāng)x=α?xí)r,λ=,試求
cos的值.
(I)已知函數(shù)f(x)=rx-xr+(1-r)(x>0),其中r為有理數(shù),且0<r<1.求f(x)的最小值;
(II)試用(I)的結(jié)果證明如下命題:
設(shè)a1≥0,a2≥0,b1,b2為正有理數(shù),若b1+b2=1,則a1b1a2b2≤a1b1+a2b2;
(III)請(qǐng)將(II)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題。注:當(dāng)α為正有理數(shù)時(shí),有求道公式(xα)r=αxα-1
設(shè)圓(x-3)2+(y+5)2=r2(r>0)上有且僅有兩個(gè)點(diǎn)到直線4x-3y-2=0的距離等于1,則圓半徑r的取值范圍是( )
A.3<r<5 B.4<r<6
C.r>4 D.r>5
函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時(shí),(x-1)f′(x)<0,設(shè)a=f(0),b=f(),c=f(3),則 ( )
A.a<b<c B.c<a<b
C.c<b<a D.b<c<a
(本小題滿分12分)設(shè)函數(shù)f(x)的定義域是R,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)f(n),且當(dāng)x>0時(shí),0<f(x)<1。
(1)求證:f(0)=1,且當(dāng)x<0時(shí),有f(x)>1;
(2)判斷f(x)在R上的單調(diào)性;
⑶設(shè)集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com