如圖4-7所示,兩根輕繩同系一個質(zhì)量m=0.1kg的小球,兩繩的另一端分別固定在軸上的A、B兩處,上面繩AC長L=2m,當(dāng)兩繩都拉直時,與軸的夾角分別為30°和45°,求當(dāng)小球隨軸一起在水平面內(nèi)做勻速圓周運(yùn)動角速度為ω=4rad/s時,上下兩輕繩拉力各為多少?

   ①

      ②

代入數(shù)據(jù)得:,

要使BC繩有拉力,應(yīng)有ω>ω1,當(dāng)AC繩恰被拉直,但其拉力T1恰為零,設(shè)此時角速度為ω2,BC繩拉力為T2,則有  ③

  T2sin45°=mLACsin30°④

代入數(shù)據(jù)得:ω2=3.16rad/s。要使AC繩有拉力,必須ω<ω2,依題意ω=4rad/s>ω2,故AC繩已無拉力,AC繩是松馳狀態(tài),BC繩與桿的夾角θ>45°,對小球有:

T2cosθ=m ω2LBCsin θ

而LACsin30°=LBCsin45°   LBC=m     ⑥

由⑤、⑥可解得   ;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,兩根不計電阻的金屬導(dǎo)線MN與PQ 放在水平面內(nèi),MN是直導(dǎo)線,PQ的PQ1段是直導(dǎo)線,Q1Q2段是弧形導(dǎo)線,Q2Q3段是直導(dǎo)線,MN、PQ1、Q2Q3相互平行.M、P間接入一個阻值R=0.25Ω的電阻.質(zhì)量m=1.0kg、不計電阻的金屬棒AB能在MN、PQ上無摩擦地滑動,金屬棒始終垂直于MN,整個裝置處于磁感應(yīng)強(qiáng)度B=0.5T的勻強(qiáng)磁場中,磁場方向豎直向下.金屬棒處于位置(I)時,給金屬棒一向右的初速度v1=4 m/s,同時給一方向水平向右F1=3N的外力,使金屬棒向右做勻減速直線運(yùn)動;當(dāng)金屬棒運(yùn)動到位置(Ⅱ)時,外力方向不變,改變大小,使金屬棒向右做勻速直線運(yùn)動2s到達(dá)位置(Ⅲ).已知金屬棒在位置(I)時,與MN、Q1Q2相接觸于a、b兩點(diǎn),a、b的間距L1=1 m;金屬棒在位置(Ⅱ)時,棒與MN、Q1Q2相接觸于c、d兩點(diǎn);位置(I)到位置(Ⅱ)的距離為7.5m.求:
(1)金屬棒向右勻減速運(yùn)動時的加速度大;
(2)c、d兩點(diǎn)間的距離L2;
(3)金屬棒從位置(I)運(yùn)動到位置(Ⅲ)的過程中,電阻R上放出的熱量Q.

查看答案和解析>>

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,兩根不計電阻的金屬導(dǎo)線MN與PQ 放在水平面內(nèi),MN是直導(dǎo)線,PQ的PQ1段是直導(dǎo)線,Q1Q2段是弧形導(dǎo)線,Q2Q3段是直導(dǎo)線,MN、PQ1、Q2Q3相互平行,M、P間接入一個阻值R=0.25Ω的電阻.一根質(zhì)量為1.0kg不計電阻的金屬棒AB能在MN、PQ上無摩擦地滑動,金屬棒始終垂直于MN,整個裝置處于磁感應(yīng)強(qiáng)度B=0.5T的勻強(qiáng)磁場中,磁場方向豎直向下.金屬棒處于位置(I)時,給金屬棒一個向右的速度v1=4 m/s,同時方向水平向右的外力F1=3N作用在金屬棒上使金屬棒向右做勻減速直線運(yùn)動;當(dāng)金屬棒運(yùn)動到位置(Ⅱ)時,外力方向不變,大小變?yōu)镕2,金屬棒向右做勻速直線運(yùn)動,經(jīng)過時間t=2s到達(dá)位置(Ⅲ).金屬棒在位置(I)時,與MN、Q1Q2相接觸于a、b兩點(diǎn),a、b的間距L1=1 m,金屬棒在位置(Ⅱ)時,棒與MN、Q1Q2相接觸于c、d兩點(diǎn).已知s1=7.5m.求:
(1)金屬棒向右勻減速運(yùn)動時的加速度大小?
(2)c、d兩點(diǎn)間的距離L2=?
(3)外力F2的大?
(4)金屬棒從位置(I)運(yùn)動到位置(Ⅲ)的過程中,電阻R上放出的熱量Q=?

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖4-7-16所示,一個半球形的碗放在桌面上,碗口水平,O點(diǎn)為其球心,碗的內(nèi)表面及碗口是光滑的.一根細(xì)線跨在碗口上,線的兩端分別系有質(zhì)量為m1和m2的小球,當(dāng)它們處于平衡狀態(tài)時,質(zhì)量為m1的小球與O點(diǎn)的連線與水平線夾角為α=60°.兩個球的質(zhì)量比為(  )?

 圖4-7-16

?    A.  ?    B.    ?    C.    ?    D.

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第十部分 磁場

第一講 基本知識介紹

《磁場》部分在奧賽考剛中的考點(diǎn)很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場引進(jìn)定量計算;b、對帶電粒子在復(fù)合場中的運(yùn)動進(jìn)行了更深入的分析。

一、磁場與安培力

1、磁場

a、永磁體、電流磁場→磁現(xiàn)象的電本質(zhì)

b、磁感強(qiáng)度、磁通量

c、穩(wěn)恒電流的磁場

*畢奧-薩伐爾定律(Biot-Savart law):對于電流強(qiáng)度為I 、長度為dI的導(dǎo)體元段,在距離為r的點(diǎn)激發(fā)的“元磁感應(yīng)強(qiáng)度”為dB 。矢量式d= k,(d表示導(dǎo)體元段的方向沿電流的方向、為導(dǎo)體元段到考查點(diǎn)的方向矢量);或用大小關(guān)系式dB = k結(jié)合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應(yīng)用畢薩定律再結(jié)合矢量疊加原理,可以求解任何形狀導(dǎo)線在任何位置激發(fā)的磁感強(qiáng)度。

畢薩定律應(yīng)用在“無限長”直導(dǎo)線的結(jié)論:B = 2k 

*畢薩定律應(yīng)用在環(huán)形電流垂直中心軸線上的結(jié)論:B = 2πkI 

*畢薩定律應(yīng)用在“無限長”螺線管內(nèi)部的結(jié)論:B = 2πknI 。其中n為單位長度螺線管的匝數(shù)。

2、安培力

a、對直導(dǎo)體,矢量式為 = I;或表達(dá)為大小關(guān)系式 F = BILsinθ再結(jié)合“左手定則”解決方向問題(θ為B與L的夾角)。

b、彎曲導(dǎo)體的安培力

⑴整體合力

折線導(dǎo)體所受安培力的合力等于連接始末端連線導(dǎo)體(電流不變)的的安培力。

證明:參照圖9-1,令MN段導(dǎo)體的安培力F1與NO段導(dǎo)體的安培力F2的合力為F,則F的大小為

F = 

  = BI

  = BI

關(guān)于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點(diǎn)了。

證畢。

由于連續(xù)彎曲的導(dǎo)體可以看成是無窮多元段直線導(dǎo)體的折合,所以,關(guān)于折線導(dǎo)體整體合力的結(jié)論也適用于彎曲導(dǎo)體。(說明:這個結(jié)論只適用于勻強(qiáng)磁場。)

⑵導(dǎo)體的內(nèi)張力

彎曲導(dǎo)體在平衡或加速的情形下,均會出現(xiàn)內(nèi)張力,具體分析時,可將導(dǎo)體在被考查點(diǎn)切斷,再將被切斷的某一部分隔離,列平衡方程或動力學(xué)方程求解。

c、勻強(qiáng)磁場對線圈的轉(zhuǎn)矩

如圖9-2所示,當(dāng)一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強(qiáng)磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉(zhuǎn)動(并自動選擇垂直B的中心軸OO′,因?yàn)橘|(zhì)心無加速度),此瞬時的力矩為

M = BIS

幾種情形的討論——

⑴增加匝數(shù)至N ,則 M = NBIS ;

⑵轉(zhuǎn)軸平移,結(jié)論不變(證明從略);

⑶線圈形狀改變,結(jié)論不變(證明從略);

*⑷磁場平行線圈平面相對原磁場方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;

證明:當(dāng)α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…

⑸磁場B垂直O(jiān)O′軸相對線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。

證明:當(dāng)β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…

說明:在默認(rèn)的情況下,討論線圈的轉(zhuǎn)矩時,認(rèn)為線圈的轉(zhuǎn)軸垂直磁場。如果沒有人為設(shè)定,而是讓安培力自行選定轉(zhuǎn)軸,這時的力矩稱為力偶矩。

二、洛侖茲力

1、概念與規(guī)律

a、 = q,或展開為f = qvBsinθ再結(jié)合左、右手定則確定方向(其中θ為的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。

b、能量性質(zhì)

由于總垂直確定的平面,故總垂直 ,只能起到改變速度方向的作用。結(jié)論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功。或:洛侖茲力可使帶電粒子的動量發(fā)生改變卻不能使其動能發(fā)生改變。

問題:安培力可以做功,為什么洛侖茲力不能做功?

解說:應(yīng)該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個問題:(1)導(dǎo)體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導(dǎo)體運(yùn)動時,粒子參與的是沿導(dǎo)體棒的運(yùn)動v1和導(dǎo)體運(yùn)動v2的合運(yùn)動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導(dǎo)體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。

很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負(fù)功的代數(shù)和為零)。(事實(shí)上,由于電子定向移動速率v1在10?5m/s數(shù)量級,而v2一般都在10?2m/s數(shù)量級以上,致使f1只是f的一個極小分量。)

☆如果從能量的角度看這個問題,當(dāng)導(dǎo)體棒放在光滑的導(dǎo)軌上時(參看圖9-6),導(dǎo)體棒必獲得動能,這個動能是怎么轉(zhuǎn)化來的呢?

若先將導(dǎo)體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導(dǎo)體棒釋放后,導(dǎo)體棒受安培力加速,將形成感應(yīng)電動勢(反電動勢)。動力學(xué)分析可知,導(dǎo)體棒的最后穩(wěn)定狀態(tài)是勻速運(yùn)動(感應(yīng)電動勢等于電源電動勢,回路電流為零)。由于達(dá)到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時間內(nèi)發(fā)的焦耳熱將比導(dǎo)體棒被卡住時少。所以,導(dǎo)體棒動能的增加是以回路焦耳熱的減少為代價的。

2、僅受洛侖茲力的帶電粒子運(yùn)動

a、時,勻速圓周運(yùn)動,半徑r =  ,周期T = 

b、成一般夾角θ時,做等螺距螺旋運(yùn)動,半徑r =  ,螺距d = 

這個結(jié)論的證明一般是將分解…(過程從略)。

☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運(yùn)動情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運(yùn)動?

其實(shí),在圖9-7中,B1平行v只是一種暫時的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當(dāng)B1施加了洛侖茲力后,粒子的“圓周運(yùn)動”就無法達(dá)成了。(而在分解v的處理中,這種局面是不會出現(xiàn)的。)

3、磁聚焦

a、結(jié)構(gòu):見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強(qiáng)磁場。

b、原理:由于控制極和共軸膜片的存在,電子進(jìn)磁場的發(fā)散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運(yùn)動時可以認(rèn)為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點(diǎn)。

4、回旋加速器

a、結(jié)構(gòu)&原理(注意加速時間應(yīng)忽略)

b、磁場與交變電場頻率的關(guān)系

因回旋周期T和交變電場周期T′必相等,故 =

c、最大速度 vmax = = 2πRf

5、質(zhì)譜儀

速度選擇器&粒子圓周運(yùn)動,和高考要求相同。

第二講 典型例題解析

一、磁場與安培力的計算

【例題1】兩根無限長的平行直導(dǎo)線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導(dǎo)線之間且在兩導(dǎo)線所在平面內(nèi)的、與a導(dǎo)線相距10cm的P點(diǎn)的磁感強(qiáng)度。

【解說】這是一個關(guān)于畢薩定律的簡單應(yīng)用。解題過程從略。

【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。

【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強(qiáng)度大小為B 、方向垂直線圈平面的勻強(qiáng)磁場中,求由于安培力而引起的線圈內(nèi)張力。

【解說】本題有兩種解法。

方法一:隔離一小段弧,對應(yīng)圓心角θ ,則弧長L = θR 。因?yàn)棣?u> →

查看答案和解析>>

同步練習(xí)冊答案