13.如圖所示,一固定斜面體,其斜邊與水平底邊的夾角θ=37°,BC為一段光滑圓弧軌道,DE為半圓形光滑軌道,兩圓弧軌道均固定于豎直平面內(nèi),一滑板靜止在光滑的地面上,右端緊靠C點,上表面所在平面與兩圓弧分別相切于C、D兩點.一物塊被輕放在斜面上F點由靜止釋放,物塊離開斜面后恰好在B點沿切線進入BC段圓弧軌道,再經(jīng)C點滑上滑板,滑板運動到D點時被牢固粘連.物塊可視為質(zhì)點,質(zhì)量為m,滑板質(zhì)量M=2m,DE半圓弧軌道和BC圓弧軌道的半徑均為R,斜面體水平底邊與滑板上表面的高度差H=2R,板長l=6.5R,板左端到D點的距離L在R<L<5R范圍內(nèi)取值,F(xiàn)點距A點的距離s=12.5R,物塊與斜面、物塊與滑板間的動摩擦因數(shù)均為μ=0.5,重力加速度取g.已知sin37°=0.6,cos37°=0.8.求:(結(jié)果用字母m、g、R、L表示)
(1)求物塊滑到A點的速度大;
(2)求物塊滑到C點時所受圓弧軌道的支持力的大。
(3)試討論物塊從滑上滑板到離開左端的過程中,克服摩擦力做的功Wf與L的關(guān)系;并判斷物塊能否滑到DE軌道的中點.

分析 (1)滑塊從靜止滑到A點過程,應用動能定理可以求出到達A點的速度.
(2)由機械能守恒定律求出滑塊到達C點的速度,然后應用牛頓第二定律求出支持力.
(3)應用動量定理與動能定理求出滑塊與滑板的位移,然后判斷兩者共速時的位置關(guān)系,然后應用動能定理分析答題.

解答 解:(1)設(shè)物塊滑到A點的速度大小為v1,根據(jù)動能定理有:
$mgsinθ×12.5R-μmgcosθ×12.5R=\frac{1}{2}m{v_1}^2$,
解得:${v_1}=\sqrt{5gR}$;
(2)設(shè)物塊滑到C點的速度大小為v2,根據(jù)機械能守恒定律有:
$\frac{1}{2}m{v_2}^2=mg•2R+\frac{1}{2}m{v_1}^2$,
解得:${v_2}=3\sqrt{gR}$,
根據(jù)牛頓第二定律有:${F_N}-mg=m\frac{{{v_2}^2}}{R}$,
解得:${F_N}=m\frac{{{v_2}^2}}{R}+mg=10mg$;
(3)物塊從C滑上滑板后開始作勻減速運動,此時滑板開始作勻加速直線運動,當物塊與滑板達共同速度v3時,二者開始作勻速運動.
由動量定理得:mv2=(m+M)v3
解得:${v_3}=\sqrt{gR}$,
對物塊,根據(jù)動能定理有:$-μmg{l_1}=\frac{1}{2}m{v_3}^2-\frac{1}{2}m{v_2}^2$,
對滑板,根據(jù)動能定理有:$μmg{l_2}=\frac{1}{2}M{v_3}^2-0$,
解得:l1=8Rl2=2R,
物塊相對滑板的位移:△l=l2-l1<l,
即物塊與滑板在達到相同共同速度時,物塊未離開滑板.
討論:
①當R<L<2R,物塊在滑板上一直勻減速運動至D,運動的位移為6.5R+L,
克服摩擦力做的功:${W_f}=μmg({6.5R+L})=\frac{1}{4}mg({13R+2L})$,
設(shè)滑上D點的速度為vD,根據(jù)動能定理有:
$-μmg({6.5R+L})=\frac{1}{2}m{v_D}^2-\frac{1}{2}m{v_2}^2$,
解得 $\frac{1}{2}m{v_D}^2=\frac{1}{2}mg({2.5R-L})<mgR$,
所以物塊不可能滑到DE軌道的中點.
②當2R≤L<5R,物塊先勻減速運動8R,然后勻速運動L-2R,再勻減速運動0.5R,
克服摩擦力做的功:${W_f}=μmg({8R+0.5R})=\frac{17}{4}mgR$,
設(shè)滑上D點的速度為${v_D}^′$,根據(jù)動能定理有:
$-μmg({8R+0.5R})=\frac{1}{2}m{v_D}{^′^2}-\frac{1}{2}m{v_2}^2$,
解得:$\frac{1}{2}m{v_D}{^′^2}=\frac{1}{4}mgR<mgR$,
所以物塊不可能滑到DE軌道的中點.
答:(1)物塊滑到A點的速度大小為$\sqrt{5gR}$;
(2)物塊滑到C點時所受圓弧軌道的支持力的大小為10mg;
(3)克服摩擦力做的功Wf與L的關(guān)系:①當R<L<2R時,Wf=$\frac{1}{4}$mg(13R+2L),物塊不可能滑到DE軌道的中點;②當2R≤L<5R時,Wf=$\frac{17}{4}$mgR,物塊不可能滑到DE軌道的中點.

點評 本題是一道力學綜合題,主要考查了動能定理的應用,物體運動過程復雜,本題難度較大,分析清楚物體運動過程是正確解題的前提與關(guān)鍵,應用動能定理、牛頓第二定律、功的計算公式可以解題.

練習冊系列答案
相關(guān)習題

科目:高中物理 來源: 題型:多選題

3.如圖所示,一定質(zhì)量的理想氣體,從圖示A狀態(tài)開始,經(jīng)歷了B、C,最后到D狀態(tài),BC平行于橫軸,CD平行于縱軸,下列判斷中正確的是( 。
A.A→B溫度升高,壓強不變B.B→C體積不變,壓強變大
C.B→C體積不變,壓強不變D.C→D體積變小,壓強變大

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

4.馬航客機失聯(lián)后,西安衛(wèi)星測控中心啟動應急機制,對在軌運行衛(wèi)星測控計劃進行調(diào)整,緊急調(diào)動海洋、風云、高分、遙感4個型號近10顆衛(wèi)星,為地面搜救行動提供技術(shù)支持,個別衛(wèi)星還變軌,全力投入搜救,如圖所示,假設(shè)衛(wèi)星在A點從圓形軌道Ⅰ進入橢圓軌道Ⅱ,B為軌道Ⅱ上的一點,下列說法中正確的是( 。
A.在軌道Ⅱ上經(jīng)過A點的速度小于在軌道Ⅰ上經(jīng)過A的速度
B.在軌道Ⅱ上經(jīng)過A的速度小于經(jīng)過B的速度
C.在軌道Ⅱ上運行的周期小于在軌道Ⅰ上運行的周期
D.在軌道Ⅱ上經(jīng)過A的加速度小于在軌道Ⅰ上經(jīng)過A的加速度

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

1.一矩形線圈,繞垂直于勻強磁場并位于線圈平面內(nèi)的固定軸轉(zhuǎn)動,線圈中的感應電動勢e隨時間t變化規(guī)律如圖所示,則下列說法中正確的是( 。
A.t1時刻通過線圈的磁通量為零
B.t2時刻通過線圈的磁通量的絕對值為最大
C.t3時刻通過線圈的磁通量的變化量最大
D.每當電動勢e變換方向時,通過線圈的磁通量的絕對值都為最大

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

8.“兩彈”所涉及的基本核反應方程有:
92235U+01n→3890Sr+54136Xe+1001n,
12H+13H→24He+01n,
關(guān)于這兩個方程,下列說法正確的是( 。
A.方程②屬于輕核聚變
B.方程①屬于α衰變
C.方程①的核反應是太陽能的源泉
D.方程②中的${\;}_1^2H$與${\;}_2^4He$互為同位素

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

18.我們在推導第一宇宙速度時需要作一些假設(shè),下列假設(shè)中正確的是( 。
A.衛(wèi)星作勻速圓周運動
B.衛(wèi)星需要的向心力等于地球?qū)λ娜f有引力
C.衛(wèi)星的運轉(zhuǎn)周期等于地球自轉(zhuǎn)的周期
D.衛(wèi)星的軌道半徑等于地球半徑

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

5.為了研究平拋物體的運動,可做下面的實驗:如圖所示,用小錘打擊彈性金屬片,A球就水平飛出,同時B球被松開,做自由落體運動,兩球同時落到地面,這個實驗說明平拋運動在豎直方向上做自由落體運動.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

2.物理學家的發(fā)展豐富了人類對物質(zhì)世界的認識,推動了科學技術(shù)的創(chuàng)新和革命,促進了物質(zhì)生產(chǎn)的繁榮與人類文明的進步,下列表述正確的是( 。
A.開普勒發(fā)現(xiàn)了萬有引力定律
B.相對論的創(chuàng)立表明經(jīng)典力學已不再適用
C.卡文迪許用扭秤實驗測出了萬有引力常量
D.牛頓發(fā)現(xiàn)了海王星和冥王星

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

3.測量干電池的電動勢和內(nèi)電阻.下列器材可供選用:
A.干電池一節(jié)                         B.直流電流表(0.6A,0.15Ω;3A,0.025Ω)
C.直流電壓表(3V,5kΩ;15V,25kΩ)    D.滑動變阻器(0-15Ω,1A)
E.滑動變阻器(0-1kΩ,0.5A)          F.電鍵             G.導線若干
(1)應選用的滑動變阻器是D(填序號),選用電流表的量程是0.6A,選用電壓表的量程是3V;
(2)請在方框內(nèi)畫出電路圖并在實物圖上連線,要求實驗誤差最小

查看答案和解析>>

同步練習冊答案